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Potentials and glueballs at large beta in SU(2) pure gauge 
theory 

C Michael and S J Perantonis 
DAMTP, Liverpool University, Liverpool L69 3BX, UK 

Received 30 July 1991 

Abstract. Interquark potentials and the glueball mass spectrum are evaluated from 32' 
lattices for pure SU(2) gauge fields at B =  2.5, 2.7 and 2.9. We discuss scaling and 
asymptotic scaling. Results for excited states are presented, including a reliable mass 
value for a Jp exotic glueball. 

1. Introduction 

The relevance of lattice gauge theory to continuum QCD depends on the 
assumption that the limit of small lattice spacing is well behaved. For a physical 
quantity, such as a mass, the combination aM is actually measured and when a 
decreases with increasing p,  as prescribed by the two-loop perturhative beta 
function, this is called asymptotic scaling. For p > 2.4 for SU(2) and p > 6.0 for 
Sii(3j, iatiice observabies show [ i j  a decrease of a with j3 which seems to be the 
same for several ohservables hut which is faster than asymptotic scaling. If ratios of 
physical quantities are indeed constant for present /3 values and beyond then one has 
valid predictions for the continuum limit. It is still of interest, however, to increase 
further until the region of asymptotic scaling is reached in order to be able to relate 
lattice ohservahles to the perturbative coupling given in terms of ,IMsB. A recent 
tvtonie Caiio ieiioiiiia;iza~oii 
obtains the result that asymptotic scaling is not restored even at p = 2.9. 

In  order to explore this approach t o  the continuum limit in more detail, we 
complement the MCRG analysis by measuring directly several physical quantities on 
large lattices at large B. The quantities that we are able to measure accurately are 
the potential between static quarks, the energy of the flux loop encircling the 
periodic boundary (the torelon) and the glueball spectrum. This will allow us to 
study with increasing B the ratio of different physical quantities as well as the lattice 
spacing a itself. 

Since we wish to study the continuum limit in a large volume to calibrate lattice 
gauge theory as a physical tool, we need to perform simulations at large with a 
large spatial lattice volume. Such simulations will be affected by critical slowing 

since the computing resource is much less than for SU(3) colour. Thus we follow [2] 
and use 3Z4 lattices at p = 2.5, 2.7 and 2.9. Moreover we use a number of their 
configurations as starting configurations. Our update code is our own although we 

0954-3899/92/111725 t 11 $ 0 7 . 5 0 0  1992 IOP Publishing Ltd 1725 

iMCRGj aiia:ysis oii 324 iaiilces pj for $U(̂ Lj 

dawn .Ed !e h.v. 2 re.!is!ic exp!er.&?. i! is p.&r&!e to use sq2) ro!ogr fie!&, 



1726 

also choose to use the same update algorithm: namely several over-relaxation 
sweeps [3] per heat-bath sweep. They measure autocorrelation times (defined as 
correlation = 0.25) for spatially extended operators of 40 sweeps at f i  = 2.7 and 300 
bwrepb ai i; = 2.9. W c  I I I C ~ S U I C  every  {our sweeps ana coiiecr data into biocks of ioo 
sweeps for analysis. As expected, these blocks are consistent with being independent 
for p < 2.9. For p = 2.9,  we will have significant correlation between our blocks of 
100 sweeps although making use of several independent starting configurations 
(widely separated from [2]) enables us to obtain sensible estimates of averages. AS 
we shall discuss later, there are also systematic errors arising at p = 2.9 from the 
limited time extent of our lattice so our results will only be indicative at that /3 value. 

In order to have reliable measurements of physical (and thus extended) objects, 
it is important to use extended and smooth operators. We find that methods used 
previously at smaller f i  values can be extended easily to the f i  values used in this 
work. The glueball and torelon observables are obtained from correlations 
measured using fuzzing (Teper blocking [3]) and a variational path basis in the 
manner of [4]. For the pctential determinations, we use R x T Wilson loops with a 
careful choice for the spatial strings of length R at each end. Thus we first fuzz [3] 
the spatial links of the lattice once to a 163 X 32 effective lattice and then use 
smearing [5] and a variational path basis in the manner of [6,7]. We also use 
multihit links [8] in the f direction. The potentials at separations which are a 
multiple of two lattice spacings are then determined using Wilson loop ratios at 
adjacent f values as in [7]. We now report our results for the potentials and glueball 
mass spectrum. 
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2. Potentials 

The dimensionless quantity measured is aV(R)  versus R / a .  We have results for the 
ground-state potentials within the irreducible representations A,,, E. and A,, of the 
symmetry group Ddh of the gluonic configuration between the static sources. 

Using the combined fuzzing and blocking technique we are able to obtain high 
overlaps (comparable to the ones obtained in our earlier work at smaller f i  values 
[7]) between the operators used and the ground state in each representation, 
without excessive computational effort. Thus with a blocking coefficient C (defined 
as in [7]) equal to 2.5 and with blocking levels in the range 8-40 we obtained 
optimal overlaps for the f i  values studied. Details of the Monte Carlo simulations 
and measurements for the potentials are given in table 1. Results for the potentials 
are shown in tables 2-4. The results are obtained by requiring that the potential 
estimates from two adjacent f ratios are consistent. In most cases these are 4/3 and 
5/4 f ratios. Then the error quoted is the statistical error associated with the 

Table 1. Details of our Monte Carla simulations and measurements for the potentials. 

Number of Lattices 
0 updates measured Blocking level Range of Rio Range of 1 

2.5 1500 375 8 2-22 0-5 
2.7 2000 500 25 4-22 0-5 
2.9 2700 615 40 4-22 0-5 
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Table 2. Values for the ground-state and excited potentials (in inverse lattice spacing 
units) as a function of the source separation at @ =  2.5. 

R l a  A,, E .  A, ,  

2 0.4836 (3) 1.119 (7) 1.146 (14) 
4 0.6229 (5) 1.089 (4) 1.165 (6) 

8 0.7970 (17) 1.110 (4) 1.254 (12) 
10 0.8745 (25) 1.148 (5) 1.315 (13) 
12 0.9514 (46) 1.194 (5) 1.393 (17) 
14 1.0300 (41) 1.243 (7) 1.438 (19, -22) 

18 1.1784 (139) 1.352 (10, -15) 1.592 (37) 
20 1.2583 (108) 1.412 (12, -18) 1.704 (19) 

6 0.7154 (12) 1.088 (4) 1.200 (9) 

I6 1.1063 (54) 1.303 (9) 1.515 (34) 

22 1.3396 (204) 1.493 (24) 1.799 (34) 

potential at the larger t value of two adjacent t values that agree. In the few cases 
that agreement is not reached even for the 514 t ratio, the difference between the 
estimates from 4/3 and 5/4 t ratios is quoted as a systematic error in our estimate. 

Our results agree well with previous results at p = 2.5 from a 20' lattice [7]. The 
lattice potential between static sources has a self-energy component which diverges 
as a+ 0, so only potential differences are physical. The most straightforward way to 
compare potentials at different values is to make fits to the R dependence. The 
statistical errors on the potentials at different R values are somewhat correlated hut 
the full correlation matrix for 12 R values is rather unstable when inverted if the 
number of data sub-samples is not much bigger than 12. Thus to weight the different 
R values in the fit, we use the diagonal errors only. We find that fits of the form 

a V ( R )  = C  - EuIR f Ka'Rla 

at the three values are statistically acceptable and determine the value of the string 
tension K i n  lattice units. Note that a lattice version of the Coulomb term is used in 
the fits. Our results from these fits are shown in table 5. The errors quoted for the 
parameters c,  E and K in table 5 are from the fit using the diagonal errors on the 
potentials only and so should he overestimates. 

Table 3. Values for the ground-state and excited potentials (in inverse lattice spacing 
units) as a function of the source separation at @ = 2.7. 

R l a  A, ,  E.  A,. 

4 0.4771 (3) 0.809 (4) 0.817 (6) 
6 0.5182 (6) 0.801 (4) 0.817 (6) 
8 0.5494 (IO) 0.798 (4) 0.825 (6) 

10 0.5767 (13) 0.800 (4) 0.835 (7) 
12 0.6023 (18) 0.806 (4) 0.849 (7) 
14 0.6269 (22) 0.815 (5) 0.864 (8) 
16 0.6512 (27) 0.825 (5) 0.881 (9) 
18 0.6754 (32) 0.837 (5) 0.898 (10) 
20 0.6997 (37) 0.849 (6) 0.914 (10) 
22 0.7238 (43) 0.863 (7) 0.932 (11) 
24 0.7478 (47) 0.880 (8) 0.951 (12) 
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Table 4. Values far the ground-state and excited potentials (in inverse lattice spacing 
units) as a function of the source separation at p =2.9. 

Rla A,,  E. A, .  

4 0.4016 (2) 0.653 (4. -5) 0.662 (6) 
6 0.4265 (3) 0.645 (4. -5) 0.658 ( 6 )  

10 0.4541 (7) 0.640 (4) 0.661 (7) 
R 0.4422 (5) 0.641 (4) 0.659 (7) 

12 11.4644 (9) 0.639 (4) 0.665 (7) 
14 0.4735 (11 )  0.640(4) 0.669 (8) 
16 0.482 (2) 0.641 (4) 11.673 ( R )  
18 0.490(2) 0.643 (4) 0.678 (8) 
20 0.498 (2) 0.646 (4) 0.683 (9) 

24 0.514 (3. -4) 0.654 (5) 0.694 (9) 
22 0.506(3) 0.650 (4, -5) 0 . 6 8 ~  (9) 

These fits show a significant decrease of the coefficient E with increasing p which 
can be understood as a decrease of the Coulomb strength with decreasing g2. This is 
expected since the continuum renormalization-group improved expression behaves 
like 1/R In(AR)-' and our analysis probes smaller R at larger p. Thus we find that a 
common fit for the A,, potential with a common value of E for all three p values is 
not statistically acceptable. 

In figure 1 we show the values for the A,,, E. and A,, potentials in a common 
graph in the R region where we have results for at least two ,!3 values. The A,, 
potentials for different 

From our results for Kaz one obtains a(2.5):a(2.7):~(2.9) of 1.80(2) and 1.81(3) 
respectively. The two loop perturbative ratio at p = 2.7 for a change of 0.2 in p is 
1.66. Thus one might conclude that perturbative scaling is not restored even at 
p = 2.9. This result is in agreement with results from a recent MCRG analysis [2]. 
However, the results at p = 2.9 should be treated with caution, because there is a 
possibility that the finite-size effects are very important. The ratio of excited gluonic 
potentials to the ground-state potential is different (see figure 1), rotational 
invariance is not restored (see glueball section), etc. Thus a determination of scaling 
up to = 2.9 by a direct comparison with the large-volume physical quantities 
measured at p = 2.5 and 2.7 is not justified, since at 6 = 2.9 there are significant 
finite-size effects. On the other hand, we find that the excited potentials at p = 2.5 
and p = 2.7 scale according to the same a ratio as for the A,, potential scaling within 
the errors (to the error shown in figure 1 originating from the statistical error in the 
determination of the Wilson loop ratios at p = 2.7, we must superimpose errors in 
the determination of the lattice spacing and the self energy constant c.  When these 
are taken into account, there is clear evidence of scaling of the excited potentials 
within the total error in their determination). Consistent results between p = 2.5 and 

values are assumed to coincide at R = W. 

Table 5. Details of the linear plus lattice Coulomb fits to the results for the A,, 
Dotentials. 

p 2.5 2.7 2.9 
Kn2 0.0363 (3) O . U I I 2  (2) O.O(l342 (14) 
c 0.527 (2) 0.47X (3) 0.432 (2) 
E 0.234 ( 3 )  0.214 (9) 0.208 (5 )  
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Figure 1. Potentials between static colour sources at separation R. The curves labelled 
A,, are the usual potentials whereas those labelled E, and A,,  refer to the low-lying 
gluonic excitations of the potential (for which the gluon field has non-zero angular 
momentum component about the separation axis). Data at three 0 values have been 
combined using 0(2.5):0(2.7):a(2.9) of 130 and 1.81, respectively. The errors shown 
originate from the statistical errors in the determination of Wilson loop ratios at 
adjacent t values. 

p = 2.7 are also obtained for the glueballs. We can thus safely conclude that we have 
a reliable determination of the ratio of the physical values of the lattice spacing from 
p = 2.5 to p = 2.7. Our results for the comparison of p = 2.5 and 2.7 correspond to a 
p function which is 80% of the perturbative value-in agreement with the MCRG 
analysis of [ 2 ] .  

As in previous work [6,7], we can compare the excited E. and A,, potentials 
with string model predictions. Potential results for p = 2.5 are shown in figure 2 
where the predictions of models for the non-relativistic bosonic string and the 

1.5 

1 .c 

O.! 

0.5 1.0 1 . 5  2.0R(  

Figure 2. The A,,, E.  and A,.  potentials at 
B=Z.S  for source separations up t o  1.88fm (the 
physical length scale is set by the value of the 
string tension fi = 0.44 GeV). Predictions ai the 
relativistic (solid line) and the non-relativistic 
(dashed line) bosonic string models for the excited 
potentials are also shown. N = 1 and N = 3 cor- 

4 8 12 16 2 0  respond to the predictions for the E, and A,, 
R'a2 5 potential. respectively. 



1730 

relativistic hosonic string with fixed ends [9,10] are also depicted. String models 
predict an energy difference between the excited potentials and the A,, potential 
with a leading behaviour of N n I R  at large R ,  where N = 1 for the E, and N = 3 for 
ihe A,". As siiuwri i n  figuie 2, iiic prcliiciiuns ui diEerenr swing moaeis ior the E. 
potential are similar for R 1.2 fm (with the physical scale set by the usual value for 
the string tension of q K / a  = 0.44 GeV) and string models are seen to provide a very 
good guide for the pure gauge theory E. potential. However, the predictions of 
different string models for the A,. potential differ substantially even at R = 1.88fm 
(the largest source separation we have studied). The A,. potential, as determined 
from pure SU(2) lattice gauge theory, is in the general region expected by string 
models for R 2 1.4 fm. Note that for the excited potentials at the largest R values, 
the statistical errors are largest and thus the systematic error associated with the 
extrapolation to large t values is inherently larger. This may explain the apparent 
steep rise at the largest R values for our determination of the A,, potential at 
j3 = 2.5. 

These gluonic excitations are relevant for hybrid meson spectroscopy. For 
applications to experiment, it is preferable to use SU(3) colour and recent results 
exist [6] which give predictions for spin-exotic hybrid mesons near the BB threshold. 
These gluonic excitations are quite close in energy to the A,, ground state at large R 
and there are many such excited levels. This has implications for the extraction of 
the ground-state interquark potential using Wilson line methods [ll].  Because of 
completeness, all excited levels contribute in this case which may explain the 
discrepancy between string tension results obtained using Wilson line correlations 
and those using the conventional method (as used here). 

C Michael and S J Perantonis 

3. Glueballs 

The gluehall results on 324 lattices are presented in tables 6-8. The extrapolated 
mass and error are shown in bold. These results are obtained by requiring that the 

Table 6. Glueball and torelon effective masses in lattice units at j3=2.5. The 
extrapolated values are shown in bold. The non-zero momentum results have p 2 <  
13(n/16)*. Results are from measurements of 475 lattices (375 for torelons). 

Rep Jp 110 2 0  312 413 
A: Or 0.74 (3) 0.70 (4) 0.62 (6) 0.56 (131 

p z o "  0.74 ( i j  0.69 (3j 0.69 i6)' 
1.13 (1) 0.99 (4) 1.02 (13) 0.79 (30) 

E + )  2' p z o  1.11  (2) 1.08 (6) 1.15 (20) 
T: 1.22 ( I )  1.11 (3) 1.28 (21) 1.08 (59) 
A; 0- 1.51 (3) 1.37 (14) 

1.59(3) 1.42(11) 1.36(45) 
E - }  Ti '- 1.64 (2) 1.24 (9) 0.74 (18) 
A: 3+ 1.88 (4) 1.95 (43) 
T :  It 2.07 (3) 1.70 (20) 0.89 (42) 
A; 3- 2.76 (12) 
Tf 1- 2.30 (5) 
A ( W  1.32 (2) 1.22 (5) 1.08 (15) 0.88 (53) 
A(110) 2.57 (9) 1.59 (45) 
B(110) 2.39 (5) 1.74 (39) 
A ( l l 1 )  5.07 (128) 
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Table 7. Glueball and torelon effective masses in lattice units at 0 = 2.7. The 
extrapolated values are shown in bold. The non-zero momentum results have p 2  < 
5(n/16)2. Results are from measurements of 725 lattices. 

Rep J' 110 211 312 413 
A: 0+ 0.44 (2) 0.40 (3) 0.39 (3) 0.41 (4) 

p f 0:  0.49 (3) 0.43 (4) 0.40 (5) 
0.65 (I) 0.57 (2) 0.55 (3) 0.53 (4) 

2+ p f O  0.71 (3) 0.60 (4) 0.56 (7) 
T:  0.69 (1) 0.62 (2) 0.56 (2) 0.53 (4) 
A; 0- 0.83 (2) 0.67 (3) 0.63 (6) 0.68 (12) 

0.91 (2) 0.79 (3) 0.73 (5) '-1 T;  2- 0.90 ( I )  0.77 (2) 0.72 (4) 
A: 3+ 1.08 (2) 0.90 (51 0.94 (13) 

"'J 
T i  I+ 1.17 ( i j  1.02 i 3 j  1.07 (8)' 
A; 3- 1.50 (3) 1.32 (11) 
T ;  1- 1.27 ( I )  1.11 (4) 1.10 (10) 
A ( l W  0.34 (I) 0.30 (1) 0.29 (1) 0.29 (2) 
A( l l 0 )  0.65 (2) 0.55 (2) 0.54 (3) 0.57 (5j 
B(110) 0.49 (2) 0.41 (2) 0.39 (3) 0.37 (4) 
A ( l 1 l )  1.01 (4) 0.82 (6) 0.82 (9) O.W (25) 

effective mass at two adjacent t ratios is consistent. In most cases these are 2/1 and 
3/2 t ratios. Then the error quoted is the statistical error associated with the effective 
mass at the larger t value of two adjacent t values that agree. From these effective 
mass values one sees that those determined from the I ratio 0/1 values are only 
slightly higher than those from large t ratios, which implies that the overlap of the 
fuzzy path combination used is excellent: it has a big projection o n  the ground-state 
glueball with very little excited-state contribution. This is essential to explore larger 
p with small statistical errors and our results confirm the continued success of Teper 
fuzzing at large p. 

The results at p = 2.5 agree with previous 204 results [4] which is to be expected 

Table 8. Glueball and torelon effective masses in lattice units at 8=2.9. The 
extrapolated values are shown in bold. The non-zero momentum results have p2< 
5 ( ~ ~ / 1 6 ) ~ .  Results are from measurements of 625 lattices. 

Rep Jp 110 211 312 413 
A: Ot  0.30 (2) 0.25 (2) 0.25 (2) 0.25 (3) 

p f O :  0.34 (4) 0.29 (6) 0.27 (7) 
0.47 (2) 0.39 (2) 0.39 (3) 0.36 (4) 

2+ p f 0  0.47 (2) 0.45 (3) 0.41 (5) 
T;  0.53 ( I )  0.48 (1) 0.45 (2) 0.42 (2) 
A; 0- 0.67 (2) 0.61 (3) 0.49 (4) 0.48(6) 

0.72 ( I )  0.62 (3) 0.56 (4) 0.54 ( 5 )  '-} T;  '- 0.72 ( I )  0.62 (2) 0.62 (3) 0.57 (5) 
A: 3+ 0.83 (2) 0.78 (3) 0.76 (7) 0.69 (13) 
T :  I' 0.90 (1) 0.81 (2) 0.76 (6) 0.84 ( IO)  
A; 3- 1.32 (3) 1.13 (9) 0.79 (16) 
T ;  I -  1.02 (1) 0.88 (2) 0.88 (6) 0.RX (15) 
A ( W  0.95 (7) 0.086 (6) 0.082 (6) 0.081 (6) 
A ( l l 0 )  0.18 ( I )  0.15 (1) 0.14 (1) 0.14 (1) 
B(110) 0.14 ( I )  0.12 (1) 0.12 (1) 0.11 (1) 
A ( l l 1 )  0.30 (3) 0.27 (3) 0.25 (3) 0.25 (4) 

"+I 
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since the respective Z values (M(O+)L) are 14.4 and 22.4 which both lie in the large- 
volume regime of Z > 9. 

For the results at p = 2.7, one sees that rotational invariance is restored in the 

12.4 is in the large-volume regime. We also obtain consistency between momentum 
zero and non-zero observables: restoration of Lorentz boost invariance. A level 
ordering of these lightest glueball states versus .Ip is also clear. The dimension-4 
operators (CC) couple to  O f ,  2+, 0- and 2-;  then dimensiond operators like CDG 
couple to 1+ and 3+; while the JP-exotic states 1- and 3- need dimension-6 
operators like GGG. 

This is the first reliable determination of the mass spectrum of a JP-exotic 
gluehall state. Even so, the mass value is relatively large with M(l-)/M(O+)= 
2.8(5). Note that previous work shows that the glueball mass ratios for positive 
charge conjugation states are identical within errors for SU(2) and SU(3) pure gauge 

the exotic 1 P  gluehall for SU(3)  pure gauge theory. 
Our glueball spectrum results at p = 2.9 come from the same analysis as at the 

lower B values. However, the A(100) torelon energy is now very low which implies 
that one cannot neglect torelon propagation 'round the back'. Thus exp (-32E) = 
0.072 for the A(100) torelon and, moreover, the torelon can have three independent 
orientations. This implies that our extraction of transfer matrix eigenstates can be in 
error. A detailed discussion of the mechanism is given in the appendix. The results 
of table 9, however, show no sign of any such torelon contamination effect. We 
conclude that the method used gives sensible estimates of the mass spectrum but 
with an unknown systematic error. The way to improve on this situation is to  use 
323 x T lattices with T >> 32. 

may he important. This is expected because the value of Z (defined as M(O+)L) is 
about 8 which is in the region where finite-size effects become important at smaller 
p. Also we see significant differences between the E+ and T :  masses so that 
rotational invariance is not restored. Thus we should not compare the 2.9 results 
directly with lower large-volume results. 

A study of scaling using large-volume physical results can thus only be made up 
to /3 = 2.7. Between f i  = 2.5 and 2.7,  the ratio a(2.5)/a(2.7) is found to be consistent 
with that obtained from the string tension analysis above but the errors are larger in 
the glueball analysis (ratios are 1.79(19) for O+ and 1.91(20) for 2+).  

Another observable is the torelon: the energy of a unit of colour flux encircling 
the periodic spatial boundary. We actually measure the energies of torelons 
....n:-~l:-A -..- I l I U I i  +..In I l l n \  thmn 1111\  n*+hnmn..31 hA....Aorinr 
C,,C,,L,,L,& UIIC. \'""I, In" \""I Yll" L l l l r r  \LLL, ULL.L"6"'."' " " " . . " Y L I I I  Y.IY w 1  

classify the torelons encircling two boundaries as even A(110) or odd B(110) under 
rotation by 90" about the third direction. The energy per unit length of the A(100) 
torelon gives an effective string tension. 

At p = 2.7, we obtain aZK,, = O.OOYl(4) which is significantly smaller than the 
value of O.0112(2) obtained from the analysis of the potential. It is known 
empirically [l] from lower f i  results that K,,  is reduced at finite L. A theoretical 
analysis of string fluctuation on a L X m2 spatial lattice yields [12] the correction 
K = K,, + n/3L2. This correction would give a2K = 0.0101(4) from the above 
torelon energy and presumably an even larger correction [ l ]  applies to a L3 spatial 
lattice rather than a L x m2 one. Thus there is no disagreement between the two 
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!F"O detc :~ . i~ : ! i"~~~  ~f :!X J = 2  tati is. This is again expecrecj since the Z vaiue of 

than-., r l l  c n  +hi- - v n + ; r . I P  m r m s l t  -+., mi..- ..ra$..l :..A:-"*:.-.. .-C 61.- . . -I . . , ,  -I 
L"1"'J L'J, 0" U B . 0  I A " L . I - 0  L I 0 Y . L  U L Y J  SL'C " ".,Cl", ,,I",C~L,U., "L L U G  ,,,">a *",U= U, 
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methods of determining the string tension, each with their own systematic errors. 
Combining these results gives aZK = 0.0110(4) which yields v K / A L  = 48.6(1.0) 
using the conventional definition of AL. Within errors, the other torelon energy 
values are also consistent with a string picture: namely energies in the ratio 1: v 2  for 
(100) and (110) torelons, respectively. 

Indeed at p = 2.5, where the spatial size is much bigger, the torelon energy gives 
a2Kea = 0.034(4) which is completely consistent with the potential determination. 
Note that in this case the torelon flux is of length 32a(2.5) which is 6 / v K  or 2.7fm 
with the conventional string tension value (0.44GeV). This is the largest distance to 
which linear confinement in pure gauge theory has been tested. This is illustrated in 
figure 2. 

4. Conclusions 

We have confirmed that fuzzing of observables is a very efficient method of 
extracting energy eigenvalues even at as large a 6 value as 2.9. Static quark 
potentials, gluonically excited potentials, torelons and glueballs have all been 
studied with high precision. Scaling between ,¶ = 2.5 and ,¶ = 2.7 is seen for all of 
these observables. We do  not find asympototic scaling in this region-in agreement 
with MCRG studies [2]. We determine the string tension ( v K / A L  = 49(1) for SU(2) 
pure gauge theory at 6 = 2.7) closer to the continuum limit than hitherto. Our 
glueball spectrum at 6 = 2.7 is very precise and shows a convincing signal for a 
JP-exotic state (1-) for the first time. 

Many MCRG results (see 2 for a summary) at large ,¶ have been obtained. These 
analyses have necessarily used small spatial volumes. We now know [I31 that for 
M(O+)L<5, the vacuum is well approximated by Gaussian fluctuations around a 
spatially homogeneous colour field. This is very different from the large-volume 
regime (M(O+)L > 9) which has colour excitations on many length scales. These 
observations imply that to  study the large-volume continuum limit in lattice gauge 
theory, it is essential to perform the simulations at large volume. Thus our present 
work satisfies this requirement up to ,¶ = 2.7 for SU(2). To study 6 = 2.9, one would 
need a 483 spatial lattice. Indeed it is worthwhile to study 644 lattices if possible to 
extend the 6 range even further. Only in this way will we he able to calibrate the 
approach to the continuum limit in lattice gauge theory. 

Appendix 

The correlation we measure between closed spatial paths P at times 0 and f can be 
expressed in terms of the complete set of transfer matrix eigenvectors la): 

At large Tand relatively small t ,  it is usually possible /to restrict (Y to the vacuum 
level (with L,, = 1) only provided that A:<< 1 for all excited states. To investigate 
this, consider the eigenvalues which are of two kinds: the zero electric flux sector 
(vacuum and glueballs) and the non-zero electric flux sector (torelons). In general 
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when finite-size effects are important the torelon states lie lower in energy than the 
gluehall states and are thus a priori more important [14]. In some cases, however, 
there may he symmetry reasons (the Z ( 2 )  electric flux invariance of the pure gauge 
iariice iheuryj wily iurriurr cKccij iiic iiicicvaui. 'Cr siuliy iiiis i r r  galerai ilrre. 
Consider first gluehall ohservables. 

Since the paths P used to study gluehalls are closed and do not encircle the 
boundary (mod 2), they have matrix elements (torelonl P lgluehall or vacuum) 
which are zero. Thus the predominant effect of light torelon states is through matrix 

extent, so with eigenvalue AT or expi-ETj where E is its energy. Since the lightest 
torelon state (the A(100), A(010) and A(001) triplet of x ,  y ,  and z-directed electric 
flux states) transforms as a representation of the discrete symmetry group Ddh, the 
way to check whether (torelonl P Itorelon) is zero from symmetry arguments is to  
suhduce the 0, representation to which P transforms to Ddh and then use the 
C!cbsch-Gordan series for Den. This icdicetes thet A(!K!) tore!nns cnc!r:bc!e !e the 
E+ path correlation (since E+ suhduces to  A,, among other representations). Thus 
the observed correlation will behave as 

( e l P , )  = (gl P Ig)'(A: + Al-')/( l+ 3 A z )  + 3(AI P 1A)'A; 
to order AI (which is exp(-E,T) where EA is the A(100) torelon energy). Thus the 
correlation has a constant component in t (from the torelon contribution) as well as 
the usuai coshjm,jt - iizjj term irom the giuehaii contriiiutiun. Uniortunateiy 
there is no way to estimate reliably the relative size of these two contributions since 
(AI P I A )  is unknown. Assuming that it is of the same order of magnitude as 
(81 P lg) suggests that correlations for which A',< A: are suspect. For our studies at 
/3 = 2.9, this corresponds to f > 3 for the E +  state. We see nu sign of any such 
constant term in our results, however. 

For the A ;  giuebaii siaie, one must subtract the vacuum component in creating a 
suitable path P. Taking this into account the correlation has corrections from 
torelon propagation given by 

(POP,) = (gl P lg)'(Ai + A:-')/(l+ 3A@ + 3((01 P 10) - (AI P IA))'A: 
where 10) is the vacuum state. Again a constant in t is present. The size of this 
constant is determined by the extent of the cancellation in the last term. Empirically 
we find a strong cancellation since (gJ P Ig)/(Ol P 10) ~ 0 . 1  while no constant term 
is apparent in the measured results. 

Analysis of torelon contaminations to other gluehall states can he made 
similarly. There are also torelon contaminations to the extraction of torelon energies 
themselves of course. For the ground-state A(100) torelon, no cunstant terms arise 
since other torelons (B(110) etc) are heavier. For the extraction of the B(110) and 
A(110) torelon energies, however, there is a priori an important constant contrihu- 
tion from A(100) torelons (e.g. an r-directed torelon from 0 to t and a y-directed 
torelon from t to 0 round the hack where the appropriate path P has xy electric 
flux). Our results of table 9 perhaps show some signs of this contribution. 

C Michael and S J Perantonis 
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