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Translation, Rotation, and Scale Invariant
Pattern Recognition by High-Order
Neural Networks and Moment Classifiers

Stavros J. Perantonis and Paulo J. G. Lisboa

Abstract—The classification and recognition of two-dimensional
patterns independently of their position, orientation, and size
by using high-order networks are discussed. A method is infro-
duced for reducing and controlling the number of weights of
a third-order network used for invariant pattern recognition.
The method leads to economical networks that exhibit high
recognition rates for translated, rotated, and scaled, as well as
ocally distorted, patterns. The performance of these networks
at recognizing typed and handwritten numerals independently of
their position, size, and orientation is compared with and found
superior to the performance of a layered feedforward network to
which image features extracted by the method of moments are
presented as input.

1. INTRODUCTION

ATTERN classification and recognition invariant under

translation, rotation, and scale transformation are usually
achieved by following a two-stage process. First. a suitable set
of features with the desired invariance properties is extracted
from the patterns selected for classification; this step is. then
followed by presentation of the extracted features to a classifier
whose purpose is to partition the space of features into decision
regions corresponding to each pattern class [1]. [2].

A class of neural-network-based invariant pattern recogni-
tion models (hereinafter class A) conforms to this approach:
conventional feature extraction methods are used to define ap-
propriate invariant features, and the role of the neural network
is simply to act as a classifier for the independently selected
features. In a second class of models (class B). however,
the desired invariances are incorporated in the structure of
dynamics of the neural network, which is then able without
external assistance both to refer a pattern to a standard
configuration and to recognize it {3]-[8]. Models in class A
are generally better suited for practical applications. because
they combine the strength of conventional feature extraction
methods with the classifying power of neural networks. while
models in class B often encounter difficulties, especially when
combining different types of invariance.

In this paper we study the invariant patiern recognition
properties of high-order networks, which can be viewed as
a link between models in classes A and B. These networks
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process products of the pixel values in an image. High-order
networks can be configured in such a way as to encode in
the values of their synaptic weights the property of invariance
under coordinate transformations in two dimensions. In this
way they can be viewed as equivalent to ordinary first-order
networks acting upon invariant features equal to appropri-
ate sums of products of pixel values. From this point of
view, the evaluation of these sums represents a preprocessing
stage, and the neural network assumes the conventional role
of the feature classifier. We show that high-order networks
can, when implemented appropriately, surpass in performance
class A networks which use any number of moments as feature
representations of the image.

A problem that is inherent in the implementation of high-
order neural networks is the combinatorial increase in the
number of weights with the order of the network [9]. Although
it is known that this problem is partly alleviated in networks
designed for invariant pattern recognition [10]. [11], this has
not been done in a way which gives control over the size of
the network.

We discuss in detail the implementation of third-order net-
works for pattern recognition with invariance under translation,
rotation, and scaling and suggest a method of controlling the
size of the network independently of the screen resolution,
a method which also leads to improved robustness against
image distortion. The patterns used to test the networks are
typed as well as handwritten numerals including images that
are distorted and corrupted by pixel noise.

This paper is organized as follows: In Section Il we intro-
duce the general formalism for the construction of invariant
high-order networks. In Section Il we discuss a method of
reducing the number of weights in an invariant network
of the third order. Section IV serves as an introduction to
pattern recognition by the method of moments with particular
reference to the application of this method in conjunction
with a neural network classifier. In Section V we describe
our simulations for the recognition of numerals, the results
of which we present in Section V1. Finally, Section VII is an
account of our conclusions.

1. HIGH-ORDER NETWORKS FOR INVARIANT
PATTERN RECOGNITION

We consider a pattern represented by its pixel map s,
i=1.2.---.N, ona N-pixel screen. Let us now regard each
pixel i as a point on a regular square grid of lattice. The

1{M5-922702503.00 © 1992 IEEE



Connectivity in a high-order network.

Fig. |

position of the pixel i is determined by the position vector
{1} with its origin at the center of the screen. Consider now a
neural network with a single layver of weights which processes
products of the form s;,5,, - -~ 5;,. In the notation established
in Fig. 1, the output of a node j is of the form

O;(s)=f ZZ"'Zu'ili—;---i,jst’lsi;"'5:'_,, (1)

where f is the activation function for the formal neurons.
We now consider a group G of coordinate transformations
realizable on the pixel lattice, under which we wish O; to be
invariant. Examples of such groups of transformations are the
group of translations by vectors whose components are multi-
ples of the spacing between pixels and the group of inversions
about a principal lattice direction. Under a transformation R
belonging to G. the pixel s; will be transformed to a pattern
represented by s, such that

(2)

sh = sy with r(i') = Rr(1).

The transformed output of the network is of the form

f =3 vl r !
O;=f Z E E TR R
1 12 tp
=f X D it sy sy | Q)
1 iy

1z

where (i’ ) = Rr{im), m = 1.2.---.p. Equation{3) can be
rewritten as follows:

0y = £ N D kst 5, | @)

where 7(km) = R™r(im), m = 1,2,---.p. Since R™! is an
element of G, it follows that O; will be invariant under the
action of all elements in G if the weights are chosen so that

©)

provided that there exists an element of G through which
r(i,,) and r(k,) are related for all m = 1.2,---.p. Thus
the desired invariance is built into the architecture of the
network through the imposition of appropriate constraints on
the synaptic weights.

For linear coordinate transformations, (5) means that
in order to ensure invariance, we must set Wipiyei,; =

Wiyigipj = Whykaw-kpj
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Fig. 2. Rules for constructing high-order networks for invariant patte:
recognition. In all cases the triangle I represents an image which the netwo
is called upon to recognize. (a)i) Translation-invariant recognition by
second-order network: For the parallel and equal segments ;2 and kyko tl
weights w,,,,, and wy, 4., are set equal to each other. (a)ii) Translatic
and scale invariant recognition by a second-order network: For the parall
segments iyt2 and ky b the weights w,,,, and wy 4, are set equal o eac
‘other. (b) Translation, rotation and scale invariant recognition by a third-ord
network: For the similar triangles 111213 and k) k2ky the weights w, .
and Wk, k, k4, are sel equal to each other. In cases (a)(ii) and (b) the effectiv
inputs of the network must be normalized as discussed in the text.

Wk, ky-k,; Whenever the relative coordinates of any pa
(ia.15) (a.b=1.---,p) can be obtained from the relativ
coordinates of the corresponding pair (k,.ks) through
transformation of G.

For example, to obtain a second-order network which prc
duces output invariant under translation by lattice vector
we must set equal all weights w; ,,; and wy,x,; for whic
the line segments i;7» and k1ko can be transformed to or
another through such a translation, i.e., weights for whic
these segments are equal in length and parallel to each othe
(Fig. 2(a)).

Note that this procedure for building into the networ
architecture invariances under a group of transformation
assigns p-tuples of points in the plane to equivalence classe
Cp, h = 1,2..-- defined by the classification rule of (5). W
can thus substitute the notation wj, ;,...;,; for the weights wil
the notation wu;, where h is a collective index correspondin
to the class Cy. The output of a node in the top layer of tt
high-order network can be now written as

5

(1115 )€CH

8i, iz ' 8i, (f

0;=f| D w
h

so that we are effectively dealing with a single-layered feec
forward network (perceptron) with weights wy,; and effectis

inputs
2.

(11, ip 1EC,

S i
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representing the invariant features of the images which the net-
work is called upon to classify. Bias terms clearly do not affect
the invariance properties of the network; nor do subsequent
layers of weights.! In this way, the network architecture is the
same as that of multilayered first-order feedforward networks,
widely studied elsewhere, and additional programming tasks
are confined to the determination of the equivalence classes
and the calculation of the effective inputs I; from s.

It is evident that exact transformations corresponding to
translation by arbitrary vectors, rotation by arbitrary angles,
and scaling by arbitrary factors are not realizable on a square
lattice, because under these transformations a lattice point does
not necessarily transform onto another lattice point. However,
we can make use of schemes involving the lattice points
closest to the continuum transform. It should be noted that
such “lattice transformations” do not necessarily form a group,
but rather have the mathematical structure of a “loop™ [12]. so
hat the above considerations are not directly applicable. For
example, neighboring lattice points may be mapped onto the
same lattice point under a lattice scaling transformation which
is thus noninvertible. We can nevertheless utilize some of the
main points in the discussion above to build networks which
ensure approximate invariance under translation, scaling, and
rotation.

For example, a second-order network can produce output
approximately invariant to translation and scaling transforma-
tions provided that

a) weights wy,;,; and wy &, for which the line segments

i112 and k k5 are parallel to each other (they can thus be
transformed to each other through a combined translation
and scaling operation) are set equal [11] (Fig. 2(a)(ii));
and

b) all images are appropriately normalized to compensate

for the fact that by scaling an image we may be mapping
points which are originally distinct to the same point or
vice versa.

f we consider images represented by binary input (0 for the
blanks on the screen and 1 for the “active” image pixels),
a linear scaling by a factor of p brings about a scaling of
the number of active pixels approximately by p? and of the
effective network inputs I, by p*. We can compensate for this
effect by normalizing the effective input vector (I;.J2.---} 10
a standard Euclidean length.

To implement combined translation. scaling. and rotation
invariance, we notice that any two line segments in the plane
can be transformed into each other by a combination of those
transformations. Consequently, if a second-order network were
used, all its weights would have to be set equal to each other,
leaving no degrees of freedom for learning how to classify
distinct patterns. A third-order network. however, will produce
output approximately invariant to all three transformations if
any two weights wy,;,,,; and w,k,k,; are sel equal whenever
the triangles with vertices at /y. i». 13 and k;. ka. ky respec-
tivelv can be transformed into each other by a combination

"We shall refer to these multilavered networks as high-order networks.
although products of the form «, ~,, --- 5, are processed only at the first
hidden laver of nodes.

of the three transformations {11]. This means that the two
triangles must be similar to each other with their equal angles
encountered in the same order when the perimeters of the tn-
angles are traversed in a counterclockwise manner (Fig. 2(c)).
In addition, all images must be normalized to compensate for
a multiplicative factor p% on the effective inputs [, brought
about by scaling transformations as discussed above.

Among the networks described in this section, second-
order networks with outputs invariant under translation have
been implemented for associative memory [13] and pattern
recognition applications [10]. In addition, Reid et al. [11] have
produced a second-order neural network with automatic trans-
lation and scaling invariance able to recognize the characters
“T" and “C™ irrespective of position and size with 100%
accuracy. In this work we concentrate on invariance under
all three affine transformations simultaneously. We shall thus
implement a third-order network suitably augmented by a
method for the reduction of the number of weights. This we
discuss in the next section.

IIl. REDUCTION OF THE NUMBER OF WEIGHTS

- A problem inherent in high-order networks is the combi-
natorial increase of the number of weights with the order
of the network. Indeed, this was the reason why Minsky
and Papert dismissed high-order networks as impractical [9].
However, building invariances into these networks partially
helps alleviate this problem, since it amounts to substituting
a number of weights corresponding to p-tuples of points in
the plane classified in the same equivalence class by just one
weight. The resulting network configuration is then capable of
practical realization in hardware [14].

In the case of the third-order network designed to imple-
ment invariance under translation, scaling, and rotation, this
reduction in the number of weights is achieved by assigning
similar triangles to the same equivalence class. Equivalently,
we can say that this classification results in the reduction of
the number of effective network inputs Ny defined in (7)
(and appropriately normalized) which represent the invariant
features by which we choose to characterize our images.

It should be noted. however, that this classification scheme
does not allow the user to vary the number of effective
inputs or the size of the network independently of the number
of pixels on the screen. Even on relatively coarse screens,
the scheme leads to a large number of effective inputs and
weights. Moreover. it is very sensitive to the mild distortions
that a triangle defined on the screen can suffer if subjected
to an Epproximate lattice rotation of scaling transformation.
This is clearly not a satisfactory situation. What is needed
is a classification scheme which can lead to a relatively
small number of invariant features controllable independently
of the screen resolution and which is less sensitive to the
distortion of images brought about through lattice coordinate
transformations.

A simpler scheme adopted here involves classifying “ap-
proximately similar™ triangles into the same equivalence class.
Approximately similar triangles will be characterized by the
same value of their two smallest angles (the value of the third



angle being dependent on the value of the other two) within
a finite tolerance w.

More specifically, let us consider the set of all triangles
which can be defined on the screen. We denote their angles
by a, 3, and v with & < 3 < +. The set T, of triangles
for which o and 3 are encountered in immediate succession
and in that order when the triangle is traversed in a counter-
clockwise manner must be considered separately from the set
75 consisting of the inverted images of these triangles, if we
do not want to impose additional inversion invariance on our
system. The following relations are obeyed by « and 3

a<g, 0<a<7/3

0<B+a/2<7/2

0<B<x/2
®)

the last of which is a direct consequence of the relations
a+ 3+ =mand 8 <. We choose an angular tolerance
w so that W = n/(3w) and Q = 7/(2w) are integers, and
partition the sets of possible values of a and § into bins
defined by

(k- 1w<a<kw
1<k<W,

(l-1w<fB<lw
1<1<Q. ©®
Finally, we assign all triangles whose angles satisfy relations
(9) for given values of k and { to the same equivalence class.

This classification scheme is illustrated in Fig. 3 for w =
7 /12 and for the triangles belonging to 7;. The segment AB
represents the side of the triangle ABC adjacent to the smallest
and next-to-smallest angles a and 3. The lines emerging from
points A and B define the boundaries of the bins in which the
range of e and (3 is partitioned. The intersections of these lines
define triangular and quadrilateral regions, so that all triangles
in a given region are classified in the same equivalence class.
Note that relations (8) must be obeyed, so that nonempty
classes correspond only to regions in the area bounded by
the bold line in Fig. 3, which consists of the segment AB, its
perpendicular bisector (£), and the arc BD of the circle with
its center at A, corresponding to an angle of x/3.

To find the number of effective inputs Ny of our network,
we must caiculate the number N, of nonempty classes of
triangles as a function of w. Evidently,

N; = 2N = 2(Nsec — Niert) (10)
where N is the number of regions in the circular sector
DAB, and Ny is the number of regions whose interior
lies entirely on the left of (¢) (for set 7;). The factor of
2 is inserted to take account of both sets 7; and T;. We
now consider the regions corresponding to a certain value
of k but all possible values of [ (eq. (9)) and calculatg, their
contributions AN (k) and AN (k) to Neec and Nyeg. For
k =0, we get AN..(0) = Q and ANy (0) = 0. Noting that
the lines corresponding to 8 = 7/2 —w, 7 /2— 2w, - - - intersect
the lines corresponding to o = 2w, 4w, - - -, respectively, at
points belonging to the arc BD, we readily conclude that,
starting from & = 0, every increase of k by 2 corresponds to
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Fig. 3. Schematic representation of the partitioning of the set of trian)
defined on the screen into classes of approximately similar triangles for
purpose of invariant pattern recognition using a third-order network.

a decrease of ANs.(k) by 1, so that

2Q/3-1 Q/3-1
Nec= Y, ANwc(k)=2 3 (Q-m)
k=0 ' m=0
= Q(5Q +3)/9. (

Similarly, starting from k- = 0, every increase of k by
corresponds to an increase of AN (k) by 1, so that

2Q/3-1 2Q/3-1 ;
Niete = Z ANiesi (k) = Z m = Q(2Q - 3)/9.
k=0 m=0

C
From (10), (11), and (12) we finally obtain for the number

effective inputs as a function of the angular tolerance w

_ 20(Q+2) (4w )

3 6w? .

.:\rr;

Finally, we note that as w increases and N; decreas
the average areas of the regions in Fig. 3 corresponding
each class increase. Consequently, it becomes more unlik
that mild distortions of the shape of a triangle will pusk
out of the equivalence class to which it originally belon
The effective inputs of the network therefore become |
sensitive to mild image distortions, including the distortic
brought about by lattice scaling and rotation transformatio
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However, this conclusion applies only ta structured distortion
which affects the shape of the image. It does not apply to noise
randomly distributed on the screen.

IV. INVARIANT PATTERN RECOGNITION BY THE
METHOD OF MOMENTS

In selecting a suitable invariant pattern recognition system
with which to compare the performance of high-order neural
networks, we decided to make use of a system utilizing the
so-called Zernike moments —suitably normalized—as the in-
variant features and a multilayered feedforward neural network
as the classifier.

Moments and invariant functions of moments have been ex-
tensively used for invariant feature extraction in a wide range
of two- and three-dimensional pattern recognition applications
[15]-[21]. Pattern recognition results from moment-based
methods compare well with the results of other popular invari-
ant feature extraction schemes, e.g., Fourier descriptor analysis
[19]. Of the various types of moments defined in the literature
(regular, Zernike, pseudo-Zernike, Legendre, rotational, and
complex moments), Zernike and pseudo-Zernike moments
have been shown to be superior to the others in terms of
their insensitivity to image noise, information content, and
ability to provide faithful image representation [21]. Moreover,
a scheme of image representation by the moduli of Zernike
moments of images appropriately normalized by means of low-
order regular moments was studied by Khotanzad and Hong
[20] and shown to yield superior results to other moment-
based methods in an invariant character recognition task. We
therefore adopt this scheme as our basis for comparison with
invariant high-order neural networks.

As regards the choice of classifier, it is by now established
that multilayered neural networks are able to match, and often
improve upon, the performance of conventional classifiers [1]
in a large number of applications, including invariant character
recognition via the method of moments [22]). Moreover, the
use of a common neural network architecture facilitates the
comparison between the two approaches (high-order networks
versus moments) to the problem of invariant patter recognition
addressed in this paper. -

In the remainder of this section we briefly review the
formalism of regular and Zernike moments and describe the
method of feature extraction based on them which we shall
use in our pattern recognition experiments.

Given a two-dimensional image represented by a continuous
function s(z,y) of the Cartesian coordinates = and y in the
plane, moments are generically functions of the form

[[ stenstandzdy (14)

where g(z,y) is an appropriate weighting function. For dis-
crete images represented by functions defined at discrete points

on a lattice, sums are used instead of integrals so that the
generic expression (14) becomes

3 sziui) gli i) Az Ay

(15)

L}

where Az Ay is the area of the unit cell of the lattice, and the
index i runs over all lattice points. We shall henceforth use the
notation for continuous images keeping in mind that discrete
images can be similarly treated by substituting the integrals
with the appropriate sums.

The regular moments of an image represented by s(z.y)
are defined by the relation

My = (16)

I
B 5

/ s(r.y) =%yt dr dy

where a and b are nonnegative integers.
The Zernike moment of order n with repetition m [23] is a
complex number given by the equation

n

Anm .

+1 o
T ]/:+y2£1s(I'y){Vnm(I.y)] drdy (17)

with n a nonnegative integer and m an integer such that n —
|m| is nonnegative and even. The complex-valued functions
Vam(z,y) are defined by

Vam(Z,%) = Vam(r,9) = Rum(r) exp(imd).-

where r and ¥ represent polar coordinates ovcrlllhe unit disk
and R, are polynomials of r (Zemike polynomials) given
by

(n=lml)/2
(-1

‘ (n—1)!
1!(n + [m])/2 = 1}t {(n - [m})/2 - 1]!

A main feature of the Zemike polynomials is that they are
orthogonal. Consequently, the image s(z,y) can be recon-
structed directly from the coefficients as follows:

$(2,9) =Y _ Y AnmVam(r,9).

From the point of view of pattern recognition, it is useful
to approximate s(z,y) by using a finite number of Zermike
moments, with order less than or equal to n*. The value of
n* can be chosen so that a substantial proportion of the image
(say 90%) is reconstructed through (20).

By virtue of (17) and (18), the Zernike moments of a
rotated version of the image s(z,y) by an angle 9, are
relatgd to the Zernike moments of the original image by
Al = Apm exp(—imd,), so that the moduli |A,.| are
invariant under rotations and can be used as appropriate
features for rotation-invariant pattern recognition. Note that
|[Anm| = |An,—m| (by (18)), so that only moments with m > 0
need be considered. Since, however, the moduli of the Zernike
moments are not invariant under translation or scaling, the
original image has to be adjusted for the effect of these trans-
formations before the | A,...| are calculated. Here we adopt the
scheme also used by Khotanzad and Hong [20], whereby . the
original image is adjusted for translation and scaling using a
standard normalization procedure involving low-order regular

Rom(r) =

=0

rn—21_ (}9)

(20)

(18) -



moments. More specifically, the image s(z.y) is transformed
as follows:

(2. y) = 8'(z.9) = s[z(Moo/d)'/* + Mo/ Moo,

y(Moo/d)"/? + Moy /Moo]
(21)

where d is a predetermined value. This operation transforms
the image s(z, y) to a standard image whose centroid coincides
with the origin and whose zeroth-order regular moment is set
to the constant value d. The moduli of the Zemike moments
for this image are invariant under rotation, translation, and
scaling and can be used as features suitable for invariant
pattern recognition. (For discrete images only approximate
“lattice” rotation and scaling transformations are realizable and
the moduli of the Zernike moments are only approximately
invariant under these transformations.) It should be noted that
with the normalization scheme described here the moduli
of the lowest-order Zernike moments, Ay and A;;, are
independent of s(z,y) (|Aoo| = d/7 and |A,;| = 0); therefore
we ignore them. Excluding these moments and the moments
with negative m, we are left with a number of Zernike features
for image processing equal to

$=1,2,:-

£=1,2-.
)

Noo = 2 +20—-1 forn®=2¢,
e forn* =20+1,

In summary, the scheme for invariant pattern classification

described in this section invelves the following steps:

a) Adjustment of all images for translation and scaling
through (21).

b) Calculation of the moduli | A, | of the Zernike moments
for the adjusted images (2 <n<n*,0<m <n,n-m
even). The moduli of the Zernike moments are used as
invariant features representing the original images.

c) Classification of the images by inputting the invariant
features | Anm| to a (possibly multilayered) feedforward
network with Nz, input nodes, an adjustable number of
hidden nodes, and a number of output nodes equal to the
total number of classes to which the images belong.

V. NETWORK IMPLEMENTATION AND EXPERIMENTS

We have implemented the following types of networks to
recognize images representing typed and handwritten digits
“D” to “8"2 (Figs. 4 and 5) on an N = 20? pixel screen.

1) Third-Order Networks (TON's): These are for a range of
values of the angular tolerance w (from 7 /144 to the highest
possible value of 7 /6). The networks are implemented in the
feature extractor—classifier mode as follows. First, the triangles
on the screen have to be scanned, their angles calculated, and
a class membership number C(i;,12,73) has to be assigned
to each triangle with vertices 7;, i, and i3 and stored for
subsequent use. An array of dimension (—‘g—) is required for

2No image is included to represent “9,” which can obviously be obtained
from “6" by a rotation.
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Fig. 4. A set of typed numerals used to train TON's and ZFC’s. All dig
are rotated and scaled versions of those shown in the first row.

OO0 O OG
MR R MR NN

Fig. 5. Two sets of handwritten numerals. The digits in (a) as well as fi
rotated and scaled versions for each digit are used for training TON's z
ZFC’s. (b) The digits in (b) as well as arbitrarily rotated and scaled versic
of these digits are used for testing.

this task (& 107 for a 400 pixel screen), which creates
storage problem. To overcome the problem, we only stc
class membership numbers for triangles with one vertex a
certain point G on the screen. The class membership numt
of any other triangle can be calculated each time it is need
by translating the triangle so that its origin coincides with
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This is a fast operation involving no multiplications and takes
a very small proportion of the time for training and recall.
Next, the effective input vectors (cf. (7) with p = 3) for the
nominated patterns are calculated, normalized to a standard
length, and presented as input to a (possibly multilayered)
feedforward network with nine output nodes corresponding
to the nine classes (“07-“8"), which is trained by gradient
back-propagation [24], [25]. The logistic function f(z) =
1/(1+ exp(—z)) is used as the activation function for the
formal neurons.

2) First-Order Feedforward Networks: These have a variable
number of hidden nodes which are used as classifiers for
the moduli of the Zernike moments of the nominated images
appropriately scaled and rotated as discussed in Section IV.
We shall refer to these networks as Zernike feature classifiers
(ZFC’s). For the images representing the typed and hand-
written numerals in our experiments, we have checked that

~rformance results are not sensitive to the value of d (eq. (21))
1or a range of values, and d = 0.075 corresponding to images
with 30 “active” pixels was selected. The maximum order n* if
the Zernike moments used for feature extraction was chosen in
such a way that the ratio of the Hamming distance between the
original and the reconstructed image to the number of pixels
in the unit disk was at most 0.10 for all images in the training
- sets. For our typed and handwritten digits. this corresponding
to n* = 11. However, we have also studied values of n” in
the range 9 to 12 (which is the maximum number used by
Khotanzad and Hong [20] in a similar experiment involving
typed characters of the Roman alphabet) to ensure optimal
performance. Thus, on excluding |Ago| and |A| for the
reasons discussed in Section IV. we arrive at networks with
28 10 47 inputs (cf. (22)). As before, the networks have nine
output nodes and are trained by gradient back-propagation.

We have carried out extensive simulations involving the set
of typed numerals to study and compare the ability of the
networks to cope with transformed, distorted, and noisy images

xperiment A). A more restricted number of simulations
nas been carried out to test the ability of the networks to
recognize handwritten numerals (experiment B). In the rest of
this section we describe these experiments before we go on to
analyze their results in the next section.

Experiment A: Invariant Recognition of Tvped Digits

A set of typed digits ranging from “0” to “8" represented
by binary input on a 20 by 20 screen is shown in the first row
of Fig. 4. These images are scaled and rotated to produce five
different versions per image. The range of the scaling factor
is between 0.7 and 1.3. The 45 resulting images, which are
shown in Fig. 4, are used for training TON's and ZFC's.

The performance of the networks is then tested with respect
to the following tasks.

1) Recognition of Transformed Patterns: Under a coordinate
transformation. a point on the lattice is mapped to the lattice
point closest to its actual continuum transform. However,
for scaling transformations by factors p > 1, a slightly
different prescription is used, to ensure that the number of pixel
grows with the scaling factor p. For these transformations.
the value of a pixel P in a transformed pattern is chosen

equal to the value of the pixel in the original pattern closest
to the image of P under the inverse of the exact continuum
transformation. Under this scheme, it is only grid rotation and
scaling transformations which introduce distortion to either
the effective inputs of the TON or the Zernike features, while
translations leave these features invariant. Thus both networks
automatically exhibit 100% recognition rates for translations.
Consequently, only their ability to recognize scaled and rotated
patterns need be checked.

To this end, 50 scaled versions of each digit in the first row
of Fig. 4 are prepared using scaling factors with a uniform
random distribution between 0.7 and 1.3. These are then
presented to the neural networks as input and assigned to
the class corresponding to the network node with the highest
output. The experiment is repeated with 50 rotated versions
per pattern using angles of rotation with uniform distribution
between 0 and 27 as well as with 50 versions that are both
scaled and rotated for the same range of scaling factors and
angles of rotation.

2) Recognition of Distorted Paiterns: Both types of networks
are tested for their ability to recognize 30 versions per pat-
tern of the standard digits “0"—"8" locally distorted by the
following algorithm: For each active pixel in every image, a

‘pseudorandom number R is generated with uniform proba-

bility density in (0,1). The pixel is shifted to one of the four
nearest neighboring sites (randomly selected) if Ry < P,
where Py is a constant; otherwise it is not shifted. Results are
presented for Py = 0.25 and 0.50.

The ability of the networks to recognize patterns both dis-
torted and transformed is also checked. To this end, 30 versions
per pattern scaled and rotated as in the task of recognizing
transformed patterns and then distorted are presented to the
networks and their rates of success in correctly recognizing
these transformed and distorted versions are recorded.

3) Recognition of Patterns Transformed and Corrupted by
Noise: Thirty versions per pattern are generated by superim-
posing noise to the original images “0"-“8." The noise is
generated by randomly flipping a proportion of the pixels
which are contained in the unit disk, to ensure a fair
comparison between TON's and ZFC's, given that only these
pixels are taken into account for the calculation of the
Zernike features. The ability of the networks to recognize the
corrupted images is recorded. The experiment is repeated by
superimposing noise to scaled and translated versions of the
original images. Noise corresponding lo three, six, and nine
flipped pixels is used.

Experiment B: Invariant Recognition of Handwritten Digits

The set of handwritten digits shown in Fig. 3 is split
into two subsets, one of which is used for training TON's
and ZFC's (Fig. 5(a)) while the other is used for testing
(Fig. 5(b)). As before. each digit is presented to the networks
in five differently oriented and scaled versions (including the
version shown in Fig. 3(a)). for a total number of 360 states
in the training set. The networks are tested for their ability
to recognize versions of the digits in Fig. 5(a) rotated by
arbitrary angles and scaled by factors between 0.8 and 1.2
In addition. they are tested for their ability to recognize the
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TABLE T
AVERAGE STasDakn: Devianion oveR Meas Valte Rano
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TABLE I
PerroRsast o TON'S FOR THE Ri COGNITION DF ROTATED asD OR
S ALED VERsIUNS OF THE TypeD DIGITS (FOR DIFFERENT WALLES OF 1)

One-Layered
tr ) (¢)
Success Rate
ST Ny Ratation Scaling Combined
fx Ny Rotation Scaling Combined
1/144 3582 94935 14.14% 210
15432 912 %.90 10.03 L 1/144 3552 85 87 31
1736 210 647 714 883 /72 912 91 91 38
1/24 112 103 4.53 537 1/36 40 g7 0g 91
118 66 3.65 4.22 4.35 1/24 112 97 100 %
1/9 32 2.54 273 3.20 1/18 66 99 100 95
1/6 1] 1.39 147 1.85 1/12 32 94 g 96
Best Two-Lavered: 40 Hidden Nodes
TARLE 1/12 32 100 99 97

AVERAGE STANDARD DEVIATION OVER MEAN VALUE RATIO FOR THE Mobupl
OF ZERNIKE FEATURES FOR ROTATED. SCALED, AND SUBSEQUENTLY
NORMALIZED VERSIONS OF THE DIGITs v THE FIRsT Row oOF FiG. 4

TABLE [V

{a/u}) (%) SUCCESS RATE FOR RECOGNITION OF SCALED AND/OR
ROTATED VERsions of THE Tyrep Dirs BY ZFC's
n* Naer Rotation Scaling Combined
One-Layered
12 47 6.08" 7.33 8.46
11 40 597 7.30 8.29 Number of Success Rate
10 34 5.86 7.44 B.16
9 28 5.76 7.09 7.91 n* moments Rotation Scaling Combined
12 47 94 94 85
S 1 X 2 11 40 95 94 89
digits in Fig. 5(b), on which they have not been trained (but 10 34 92 90 84
which are approximately of the same size and orientation as 9 28 86 88 78
those m. F.lg. 5(a), as well as scaled and/or rotated versions of Best Two-Layered: 40 Hidden Nodes
these digits.
12 47 93 95 91

V1. NUMERICAL RESULTS

A. Recognition of Typed Numerals

1) Rotation and Scaling: A look at the scaled and rotated
images in Fig. 4 will convince the reader that rotating and
especially scaling images on a 20 by 20 grid introduces
a substantial amount of distortion. As a result, both the
effective inputs of the TON and the inputs of the ZFC are
only approximately invariant under these transformations. A
measure of the sensitivity of these features to rotation and
scaling on the grid is the ratio of the standard deviation ¢ to the
mean p of the value of each of these features for a large sample
of rotated and scaled images. In Tables I and II we show
the average o/u ratio,—evaluated using 50 scaled, rotated,
or both scaled and rotated versions of the nine digits—for
the effective inputs of the TON and for the inputs of the
ZFC respectively. Note that the average o/ increases sharply
with the number N of effective inputs of the TON. It is thus
verified that the effective inputs are less sensitive to rotation
and scaling for larger values of the angular tolerance w. Note,
moreover, that for the smaller values of .V, the effective inputs
of TON's are less sensitive to the transformations than the
Zernike features for a range of values of n*. Provided that
these TON’s can adequatelv separate the patterns, they should
be expected to exhibit better performance than ZFC’s.

In Table III we list the success rates for recognition
scaled, rotated. and both scaled and rotated versions of tl
nine digits by TON’s with different values of w. For on
layered networks, as w increases starting from w = 7/144, t
success rate increases, with the network reaching its optim
performance in the region w 2 /36 to 7/12, correspondil
to 112 — 32 effective inputs. The optimal performance cc
responds to perfect or nearly perfect recollection of imag
separately scaled or rotated and to a success rate of %% t
images subjected to both transformations. It follows that
relatively small number of effective inputs corresponding
relatively large values of w constitutes an adequate set
features for efficient invariant pattern recognition. Only {
the largest possible value of w = /6 do we find that the or
layered TON cannot be trained successfully, indicating t}
the resulting ten effective inputs cannot be separated by linc
decision boundaries.

We have also investigated the effect on performance
adding a hidden layer with a variable number M of noc
(in the range 5—80) and find that this can lead to a margir
improvement in performance, corresponding to 97% maximt
accuracy for both transformations (see Table 1I).

Finally, in Table IV we show the success rate for recc
nition of rotated and/or scaled patterns by ZFC's. Optin
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TABLE V
SUCCESS RATE FOR RECOGNITION OF TRANSFORMED, DISTORTED, axD Noisy VERSIONS OfF THE TyPED Dicrrs Using TON's
One-Layered
Distortion Trans. + Distor. Noise Transform.
Po Fy (pixels) + Noise
W/ Ny 0.25 0.50 0.25 0.500 3 6 9 3 6 9
1/144 3552 97 82 67 57 100 99 26 75 B3 44
1/72 912 99 B6& 73 63 100 97 ] 81 B 47
1/36 240 99 87 83 70 100 92 67 86 63 45
1/24 112 99 89 83 69 100 83 36 88 62 43
1/18 66 99 89 86 69 99 85 52 82 57 43
1;’ 12 32 98 89 86 71 97 85 36 86 63 46
Best Two-Layered: 40 Hidden Nodes
1/12 32 99 91 89 77
’ TABLE V1 g
SuCCEsSS RATE FOR RECOGNITION OF TRANSFORMED, DISTORTED, AND Noisy VERsIONs ofF THE Tyred Digirs Using ZFC's
Distortion Trans. + Distor. Noise Transform.
Py Py { pixels) + Noise
n* Nzer 0.25 0.50 0.25 0.50 3 6 9 3 6 9
i2 47 90 82 74 63 83 81 75 81 67 66
11 40 87 83 73 66 86 82, 71 84 65 66
10 34 86 79 73 61 81 74 64 B0 63 63
9 28 79 64 62 60 80 65 59 69 39 52
(0) 0 12) (3 14) (5] (61 (7 (8)
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Fig. 6 Scaled. rotated, and locally distorted versions of the digits in the first row of Fig. 3 correctly recognized by a third-order

network with 32 effective inputs and 40 hidden nodes. The local distortion to which the digits are subjected coresponds to
Py = 0.5 (see text).

performance is achieved for n* in the range 11-12. With a 2) Distortion: Results for the recognition accuracy of TON's
two-layered network, we can achieve a maximum recognition and ZFC’s are presented in the second and third columns of
accuracy of 91% for both transformations. It is thus evident  Tables V and VL It is verified that TON's with a relatively
that TON’s with a relatively small N; exhibit performance small Ny perform better than networks with a large number
superior to that of the optimum ZFC. of inputs. especiallv when combined distortion. rotation, and
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TON, Np=912. 0-=0 82 93 i 78 71 74 bt
ZFC.n” =11, M =40 89 89 ™ 71 6% n 63

scaling is considered. Adding a hidden layer to the flat TON
leads to improved performance. Fig. 6 shows some of the
distorted and transformed patterns a network with Ny = 32
and w = w/6 has been able to classify correctly. For the
ZFC's we find that the addition of a hidden layer of nodes
does not lead to an appreciable improvement in performance
for the recognition of distorted images. All TON’s except for
the largest (w = 7 /144 and 7/72) are superior to the ZFC's.

3) Noise: Results for the recognition of noisy images are
shown in the last two columns of Tables V and VI for TON's
and ZFC’s respectively. In contrast to their behavior under
distortion, TON's become less tolerant to noise as N de-
creases from infinity towards relatively small values (Table V.
column 4). However, when images are scaled. rotated, and
subjected to noise at the same time, the net effects of structured
distortion brought about by the lattice transformations and of
noise seem to balance each other, and similar success rates are
obtained for all values of Ny (Table V, column 5).

TON's appear to be generally less noise-tolerant than ZFC's
(the relatively low success rates of ZFC’s for small amounts
of noise can be attributed to the distortion brought about by
the translation and scaling transformations in the image nor-
malization process), although both can tolerate relatively small
amounts of noise (see also [20], [21] for the noise sensitivity
of Zemnike features), especially when compared with non-
invariant associative memories and pattern recognition systems
[26]. [27].

B. Recognition of Handwritten Numerals

From the typed numeral recognition tests described so far,
it has become apparent that two-layered TON’s show only
a marginal improvement in performance compared with one-
layered networks. However, it has also become clear that to
ensure efficient invariant recognition, networks with a large
number of effective inputs have to be abandoned in favor of
smaller networks. The option of including hidden nodes in the
network architecture has to be retained as a means of ensuring
adequate capacity to deal with large amounts of data in the
training set. Moreover, our strategy abandons the principle
whereby the strength of high-order networks in dealing with
tasks for which the formation of nonlinear decision boundaries
is required lies in their sideways expansion to include enough
“image-enhancing” terms [28]-[30], and the option of includ-
ing a second layer of nodes to deal with these problems must
be retained.

Our handwritten digit recognition experiments provid
good illustration of these points. We find it impossible
train successfully flat TON's with a relatively small num
of nodes (in the range 32-112) on the 360-image trair
set. Although more extended flat networks can cope with
task. their performance is poor compared with that of ¢
layered networks with a relatively small number of effec
inputs. Typical results are shown in Table VII, where
performances of a flat network with Ny = 912 and ¢
rao-layered network with N; = 66 and 40 hidden nodes
compared. Although the second network has approxima
wwice as many weights as the first one, it exhibits infe
rzcognition rates.

The performance of the TON with Ny = 66 and 40 hid
rode also compares favorably with the performance of
ZFC (a typical result-is also shown in Table VII). The ¢
recognition rate for the digits of Fig. 5(b), on which
cetwork has not been trained, is also superior to the recogni'
rzie of 78% of feedforward networks to which the p
representations of the digits are presented as input withs
any feature extraction [27].

VIiI. CoNCLUSION

In this paper we have studied the invariant recogni
properties of high-order feedforward networks. We have
moduced a method for conmtrolling the size of third-o:
networks designed for recognition of translated, rotated,
scaled images. The method involves partitioning the se
wangles on the image plane into classes of approxima
similar triangles characterized by the same value of their
smallest angles within a finite angular tolerance. For relatiy
large values of the angular tolerance, the method lead:
the construction of economical nerworks with a relati
small number of weights, which exhibit improved recogni
performance compared with the large structures obtained
using small values of angular tolerance. The improven
is evident in recognizing transformed (translated, scaled,
rotated) as well as distorted patterns.

It was found that third-order networks are superiol
the use of Zemnike moments followed by a conventic
peural network classifier in invariant pattern recognition t:
including recognition of distorted patterns, but not patt
corrupted by noise randomly distributed on the screen
both cases, the computational overhead incurred in coc
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the images is much less than the time required to train the
classification network. One further attraction of using high-
order networks. in this respect. is that of allowing practical
hardware implementations which would considerably speed
up the preprocessing stage.

Finally, further research is possible toward optimal ways
of defining the boundaries between the equivalence classes
of approximately similar triangles in order to minimize the
sensitivity of third-order networks to distortion. Additional
areas for investigation are the use of a large number of
pixels, particularly in respect of the effect on robustness
against pixel noise, and also comparisons with more elaborate
descriptive character representations, as obtained, for instance,
using morphological methods.
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