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Abstract— A novel algorithm is presented which supplements
the training phase in feedforward networks with various forms of
information about desired learning properties. This information
is represented by conditions which must be satisfied in addition
to the demand for minimization of the usual mean square error
cost function. The purpose of these conditions is to improve con-
vergence, learning speed, and generalization properties through
prompt activation of the hidden units, optimal alignment of
successive weight vector offsets, elimination of excessive hidden
nodes, and regulation of the magnitude of search steps in the
weight space. The algorithm is applied to several small- and large-
scale binary benchmark training tasks, to test its convergence
ability and learning speed, as well as to a large-scale OCR
problem, to test its generalization capability. Its performance
in terms of percentage of local minima, learning speed, and
generalization ability is evaluated and found superior to the
performance of the backpropagation algorithm and variants
thereof taking especially into account the statistical significance
of the results.

I. INTRODUCTION

EEDFORWARD neural networks (FNN'’s) have been the

subject of intensive research efforts in recent years be-
cause of their interesting learning and generalization properties
and their applicability in a variety of classification, approxi-
mation, and control problems. Following the backpropagation
(BP) algorithm, a multitude of supervised leamning algorithms
have been devised in recent years with the aim of improving
key properties of these networks, such as convergence ability,
learning speed, scalability, and generalization capability. Each
of these artempts has been focused on a single target, such
as improvement of learning speed or generalization ability,
but not on both of them. The key issue, however, is the
development of training algorithms that simultaneously im-
prove convergence ability, leaming speed, and generalization
capability in real-world large-scale problems.

A common objective of the BP algorithm and its descen-
dants is to adapt the synaptic weights until the activations
of the network’s output layer units match prespecified val-
uesftargets. Apart from this sine qua non condition, some
algorithms incorporate in their formulation additional infor-
mation about FNN desired learning properties. For example,
attempts to increase learning speed by helping the hidden units
to play an active role during training. as well as artempts to
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improve generalization by enabling the decay of unnecessary
synaptic weights, have been reported in the literature.

In this paper, the view is put forward that a significant
amount of information about FNN desired learning properties
can be incorporated during their training phase in the form
of additional conditions on the weights and/or outputs of the
network units. Following a critical overview of supervised
learning algorithms, an algorithm for leaming efficiently with
constrained optimization techniques (ALECO) is presented
which achieves a lower number of local minima, "higher
learning speed, and better generalization capability than other
well-known supervised leaning algorithms by incorporating
information about the desired behavior of the hidden units
and synaptic weights.

In the experimental part of this paper all important issues
of FNN learning, such as learning speed. convergence ability,
scalability, and generalization ability, are considered. In the
effort of evaluating the performance of our algorithm and
comparing it with that of other well-known supervised learning
algorithms, we carefully discuss the selection of suitable
algorithms for comparison, the choice of benchmarks, the
organization of our experiments, and the presentation of our
results. We thus propose a uniform empirical environment
which enables fair comparison of the algorithms. Special at-
tention is paid to ensuring statistical significance of the results
for all algorithms and all benchmarks tried. On evaluating
the performance of our algorithm, in terms of all the above
mentioned critical issues of ENN learning, we find that it is
an effective training procedure compared with BP and some
of its well-known descendants.

This paper is organized as follows. In Section II, we present
a critical overview of training algorithms proposed by other
authors to improve key properties of FNN learning. Led by
this discussion, we consider functional conditions that contain
valuable information about FNN desired learning properties in
Section II1. These conditions codify the goals of avoiding local
minima, accelerating learning, and improving generalization
capability. Moreover, they lead to an optimization problem
which forms the basis for ALECO. This optimization problem
is formulated in Section IV, while ALECO is introduced and
derived in Section V. In Section VI, we discuss the problem
of evaluating and comparing the performance of different
supervised learning algorithms for FNN. In the light of this
discussion, we compare the performance of ALECO, in terms
of convergence ability, learning speed, and generalization
capability, with that of other popular and reputedly successful
supervised learning algorithms in Section VIL Finally, Section
VIII is an account of our conclusions.
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II. OVERVIEW

A very important result of the studies related to FNN is
the rigorous theoretical establishment, based on Kolmogorov’s
theorem [1] and Sprecher’s modification [2], that these net-
works are universal approximators, once properly trained
[3]-[5]. The problem of devising efficient algorithms for
training FNN is thus of central importance to neural-network
research. Among these algorithms, BP [6], [7] is the first one
used and probably the most widespread, despite criticism that it
is too slow and poor in terms of scalability (see, e.g., [8]) and
generalization ability in certain difficult problems (see. e.g.,
(9]), too general to be used in a wide variety of problems [10],
and biologically implausible [11]. This technique is suitable for
application in the case of the complex FNN architecture, where
the desired target output of every hidden layer unit is unknown.
The algorithm has a well-defined objective (matching of the
network outputs with the desired targets) which can be clearly
formulated as a problem in mathematical terms (minimization
of a cost function E(T,O(w)), where T, O are the desired
and actual output vectors, respectively, the latter considered as
functions of the weight vector w). The problem is solved via

search in the weight or the transformed weight space [10]
using a mathematically rigorous and well-defined optimization
technique (gradient descent), whose convergence properties
have been thoroughly studied [12], [13]. Note, however, that
BP does not take into account any additional information about
learning in a FNN, apart from the multilayer architecture and
the desired input-target output relation.

Regarding generalization ability, especially in classification
problems with noisy and low-dimensional data [14], the BP al-
gorithm often exhibits very good performance, better than that
of several conventional classifiers [15]. The major drawbacks
of this algorithm, however, are its slow learning speed and
occasional convergence to local minima [16]. Occurrence of
local minima hampers training and results in attaining inferior
classification [17] or function approximation performance.
In addition, the two problems of slow learning speed and
convergence to a certain kind of local minima are closely
related and can be partially attributed to the issue of premature

turation [16]. Therefore, the problems of generalization
aoility, convergence to local minima, and slow learning speed
are related to one another. Thus, due attention should be paid
to these three major issues simultaneously if we aim at design-
ing reliable FNN classifiers/controllers/predictors. Concerning
especially the problem of slow learning speed, one might
tend to consider it a minor issue compared to generalization
capability. Some recent solid theoretical and experimental
results, however, have shown that the problem of loading a
set of training examples onto a neural network is NP-complete
(18]-[20]. Thus it is unlikely that existing algorithms (like
BP) can be guaranteed to learn the optimal weight solution in
polynomial time. This problem is caused by several specific
characteristics of the FNN error surfaces as discussed in
Section III. These results show clearly the severity of the
slow learning speed issue in FNN and are largely confirmed
in recent work in satellite imaging classification tasks [21],

1421

without degrading generalization performance, and ability of
convergence to global minima still remain very important
research goals and due attention is paid to them in this paper.

FNN supervised learning algorithms which have been pro-
posed after BP with the aim of improving learning speed
and generalization ability can be classified into two main
categories with respect to their approach of the learning
problem. The first category comprises all algorithms which
consider supervised learning in a given FNN simply as the
unconstrained minimization of one cost function E(T. O(w))
in the weight or ransformed weight space. This function is
encountered in many forms such as the conventional sum of
squared errors, the hyperbolic arctangent [8] form, and the
“entropic” like form [23], etc. This first category includes
all algorithms originating from the field of numerical analysis
such as second-order methods [24], [25], line search methods
(e.g., steepest descent and conjugate gradients [26]), and
quasi-Newton methods [27]. It also includes all algorithms
originating from the field of optimal filtering (e.g., extended
Kalman algorithm [28]). Finally, all heuristic optimization
techniques which perform a search in the weight space (e.g.,
Quickprop (8] and Delta-Bar-Delta [29]) belong to this cat-
egory. :

Criticism about some of these techniques can be found
in [8], [30], and [31], but we wish to stress an entirely
different point. In our view, the common characteristic of these
approaches is that they identify the learning problem with the
unconditional optimization procedure of one function. In this
procedure, information about the architecture of the system
and the desired input—output association is incorporated but
not much else. It is thus assumed that optimization methods
proved to be successful in the fields of numerical analysis
or optimal filtering will preserve their efficiency if they are
slightly modified, or even worse, copied [31] and then applied
to the problem of learning. The efficiency of a method,
however, depends on its inherent capability to incorporate into
its formalism as many properties of the field to which it is
applied as possible. From this point of view, all the above
procedures suffer from a very serious drawback. They do not
include in an integrated manner the continuously accumulated
information about FNN leamning, some aspects of which we
address in the following paragraphs.

The second category of supervised algorithms for solving
the FNN learning problem includes algorithms embodying in
their formalisms additional information about learning in FNN.
Along these lines, different strategies have been presented.
For example, le Cun criticizes in [10] the notion of a general
BP architecture that can solve the learning problem in every
case. The concept of task-specific architectures is therefore
introduced. Although this way of building information about
desired learning properties into an FNN system has been
proved successful in the case of image recognition [32], it
is very difficult to specify the appropriate architecture in the
general case [10].

Another strategy for handling the information incorporat-
ing problem includes many algorithms based on a mixed
cost function approach, where optimization of many criteria
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some algonithms are based on the key role of hidden units in
the achievement of the desired input—output mapping during
training. The learning process has been described by many
authors (see. e.g.. [6]. [33]. and [34]) in terms of finding
good “internal representations” of the input patterns on the
hidden units and several algorithms have been proposed at-
tempting prompt activation of these units. In a group of
related algorithms. supervised leamning in FNN is defined as
minimization of E(T,O(w,S)) where S is the vector of
the internal representations. Information about the behavior
of the hidden units is thus incorporated in the cost function.
Minimization procedures used can be formal, as in the moving
targets algorithm [35], or heuristic, as in the CHIR algorithm
[36], [37]. In a final class of such algorithms, the information
about desired learning properties is explicitly presented in
the form of penalties added to the cost function. Leaming is
described as minimization of E(T, O(w))+4&F(w,S) [38] or
as minimization of E(T,S, w)+kF(w,S) [30], where k € R
and F'(w.S) is a suitably defined function of the weights and
hidden node outputs.

It should be mentioned that most of these methods lack
the clarity of BP in both objectives and methodology. The
search space is extended beyond the initial weight space
to include the hidden unit outputs without due attention
being paid to the relations among these variables imposed
by the FNN architecture; often heuristic approaches are
adopted to reach acceptable solutions. Moreover, no study has
been presented which shows an advantage of these methods
over other well-established training algorithms—including
BP—concemning learning speed or generalization capabilities.
To be more specific, it turns out [30] that the only slight
improvement resulting from these algorithms, compared
with the classical BP, lies in the case of local minima.
Since most of these algorithms extend the search space by
increasing the number of independent tree parameters of the
‘saming problem, we may expect that generalization results
will be relatively poor [10], [39] and learning times will
increase. Only some more carefully formulated algorithms,
which are based on the mixed cost function approach but
do not extend the search space, exhibit success as regards
improvement of generalization performance. Examples are
weight elimination techniques [40], [30], where leaming is
described as minimization of E(T, O(w)) + AF(w) and the
double BP algorithm [41], where learning is described as
minimization of £(T.O(w)) +kF(E(T,O(w)),I) (Lis the
vector of external inputs).

Although the mixed cost function method is frequently
encountered in the optimization literature [42], its major
drawback is that it partly compromises the main objective of
FNN training phase which is to adapt the synaptic weights
until the activations of the network’s output layer units match
prespecified values/targets. Thus, this mixed BP-output-error
function formalism does not mathematically guarantee re-
duction of the traditional BP output error function until its
local or global minima are reached, as the conventional BP
formalism does. Another drawback of this mixed BP-output-
error function optimization method is the large number of
parameters which should be tuned during leaming, especially
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when the goal is to embody a lot of information about desired
learning properties in FNN training, in the form of many
functional conditions.

The overview presented in this section raises two important
questions, which we take up next. Our answers to these
questions lead directly to the formulation of ALECO:

* Which types of additional information about learning in
FNN would it be of interest to incorporate into training
algorithms in the form of suitable functional conditions?
This issue is taken up in detail in Section III.

What methods are appropriate for incorporating such
information into FNN training algorithms? Methods are
needed which maintain the clarity in objectives, rigor, and
mathematical elegance of BP and overcome the draw-
backs of the mixed cost function optimization approach.
Such methods can be sought in the rigorous frame-
works of nonlinear programming and optimal control. In
particular, ALECO will be based on a modification of
the gradient ascent technique proposed by Bryson and

Denham in the early 1960’s [43], as discussed in Sections
IV and V.

[II. FUNCTIONAL CONDITIONS FOR
IMPROVING FNN LEARNING PROPERTIES

In this section, we formulate functional conditions under
which training in FNN is demanded to take place along
with the minimization of the well-known mean square error
cost function. These conditions incorporate information about
learning, in the form of goals for avoiding local minima,
increasing learning speed, and improving generalization capa-
bility, and are integral parts of the ALECO training procedure
which will be derived in Section V.

Consider an FNN with one layer of input, M layers of
hidden, and one layer of output units. The units in each layer
receive input from all units in the previous layer. We denote
the unit outputs by Of;“), where the superscript (m) labels a
layer within the structure of the neural network (m = 0 for the
input layer, m = 1,2.---, M for the hidden layers, m = M +1
for the output layer), i labels a unit within a layer, and
p=1,2.---, R labels each of R input patterns. The synaptic
weights are denoted by wg;"), where m, 7 denote, respectively,
the layer and the unit toward which the synapse is directed and
¢ denotes the unit in the previous layer from which the synapse
emanates. Biases will be treated as weights emanating from
units with constant, pattern-independent output equal to one.

A. Alignment of the Hidden Unit Outputs

with the Quiput Layer Errors

This desirable property has been introduced by Fahlman
in his cascade correlation algorithm [44]. Here we use as a
measure of this alignment the following function

1/2
d = %?- {Z (e5p — (":”’_)p}z(o‘(;’n) - (OE;’"J}P)‘

- E/R (1)
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which bears some similarity to that used by Fahlman. This
function should be increased as training progresses. The sym-
bol (), denotes averaging with respect to p and the quantities
€;p denote the squared output layer errors. We argue that
incorporation in the training algorithm of a condition which
leads to such an alignment can have beneficiary effects upon
reduction of local minima incidence rate. In an analysis of the
frequently encountered types of local minima in FNN training
[45], the physical correlates of the most prominent classes of
these local minima have been described as follows:

« Type 1: Hidden nodes whose decision boundaries have
been moved outside the training sample region in the
sample space (stray hidden nodes).

= Type 2: Hidden nodes that implement the same function.

» Type 3: Hidden nodes that are all inactive in a specific
region of the training sample space.

These physical correlates of the local minima can be related

to several factors [17]:

* Local minima incidence, especially at the beginning of
leamning, can be sometimes attributed to the existence of
hidden units that have gradual transition regions. These
units are sensitive to the training process and therefore
are desirable. In these regions, the hidden units tend
to approximate linear transfer functions. The combined
outcome of a pair of such transfer functions is only
another different linear function, which could have been
produced by a single hidden node. Therefore, the decision
boundaries of each such hidden node are obscured by this
combined functioning. It often happens that either both
hidden units duplicate one function or the one implements
the necessary function, while the other tends to move out
of the sample region [17]. As a result, local minima of
type 1 or type 2 are created. By aligning hidden node
outputs to the output errors at each epoch in the initial
stages of training when the output error is large, we help
input-to-hidden layer weights to evolve rapidly and drive
hidden nodes to activate at the nonlinear regions of the
transfer function, thus avoiding local minima originating
from the undesirable effects of linearity.

* Local minima incidence is also related to amplification of
error signals propagating backward from the output units
due to the existence of large hidden-to-output weights.
The input-to-hidden layer weights are thus dramatically
perturbed [17], since their adaptation rule is closely
related to the magnitude of the hidden-to-output node
weights. This results in large shifts in the positions of the
decision boundaries of these hidden units and therefore
creates local minima of types 1 or 3. Alignment of as
many hidden node outputs as possible to the output errors
at each epoch can hinder the oscillation and extensive
shifting of the hidden nodes: When the output error
is gracefully reduced, hidden node activations are also
gracefully stabilized near their mean value and therefore,
the input-to-hidden layer weights are forced to gracefully
adapt. Thus the disastrous effects in decision boundaries
of hidden units that lead to certain local minima can be
avoided.
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B. Alignment of Weight Updates in Successive Epochs

FNN error surfaces have certain characteristics that make
them very difficult to search. In specific, they have many long
narrow troughs flat in one direction and steep in surrounding
directions [46]. In the vicinity of such regions, gradient descent
proper suffers from very high frequency variations in weight
space, settles into zig-zag trajectories, and is hopelessly slow
[42], [47]. Supplementing gradient descent with momentum
acceleration represents a compromise between the need to
decrease the cost function at each epoch and the need to
proceed along relatively smooth paths in the weight space.
The formalism favors configurations where the current and
previous weight update vectors are partially aligned, thus
avoiding zig-zag paths and accelerating learning. Evidence of
such behavior in small networks is given in [48]. The use of
a constant momentum coefficient, representing a constant, a
priori chosen degree of weight update alignment, however,
does not help avoid zig-zag trajectories in troughs of arbitrary
eccentricities [47]. A scheme for the momentum term. which
results in adaptive rather than a priori alignment between
current and previous weight vector changes, according to the
specific characteristics of error surface localities, has been suc-
cessfully investigated in [48] and found to achieve increased
learning speed. In this work, the following expression was used
as a measure of the alignment of successive weight offsets,
which should be increased at each epoch during learning

P, = Z (wg‘?} - wg;n) c) (wl-(;-n)‘c — w,-{;n) !). (2)
ijm

In the above equation ! and ¢ mean last and current epoch,
respectively.

From the above discussion we are led to the conclusion
that imposition of adaptive alignment between current and
previous weight vector changes on FNN training should lead
to increased leamning rates. This expectation is confirmed in
[48] and in the experimental study of this paper.

C. Elimination of Excessive Hidden Nodes
Decrease of the function

¢3=Z((o§;");)2, 1<m<M (3)

im

at each epoch aims at making the average outputs of as many
hidden units as possible very small during convergence of
the training procedure, so that they do not play an active
role in the feedforward propagation of the input signals. In
this way, some hidden units are eliminated, with an expected
improvement in generalization capability due to the reduction
of the effective number of model parameters and thus reduction
of the generalization error because of the bias of the model
[49]. By using this pruning procedure we can automatically
determine the maximum number of necessary hidden units for
the successful termination of the FNN training process. thus
reducing the need for extensive experiments to find the best
hidden layer architecture.



1424

D. Measure of the Weight Update Vectors Equal to a Constant

We impose on ENN leamning the condition that the sum of
squares of the individual weight changes take a predetermined
positive value (§P)*

By = Z ( (;ﬂ) wE;‘t‘}

Ljm

C)z —(5P)2=0. (&

Thus, at each epoch, the search for an optimum new point
in the weight space is restricted to a small hypersphere of
radius 6P centered at the point defined by the current weight
vector. The main objective of this condition is improvement
of the FNN generalization capability. In the BP algorithm,
the cost function landscape is complicated with many flat
regions and long narrow troughs [47] and can be difficult
to search efficiently. Global minima regions can be located
in such troughs, and thus this searching inefficiency cannot
read to good generalization performance. We can understand
these BP searching deficiencies easily, if we think of how this
algorithm attempts to overcome very slow learning rates in
flat regions. Because cost function gradients are very small
in flat regions, it is imperative to use large learning rates
if we want to complete the training process in reasonable
time. When steep regions with large cost function gradients
are encountered, however, this strategy leads to abrupt long
jumps so that interesting regions can be missed altogether. To
overcome these difficulties, we propose condition (4) which
aims at eliminating the long abrupt jumps in weight space and
thus searching the vicinity near global optima more efficiently.
Therefore, we should expect better generalization capabilities
in FNN by imposing this condition.

1V. FORMULATION OF THE OPTIMIZATION PROBLEM

We view supervised learning as an iterative process with
the following objectives:

« Reach, upon completion of the iterative process, a mini-
mum of the cost function

iy (o) e

ip

with respect to the synaptic weights and output activations
(T, represent target values for units in the output layer of
the FNN). To this end, the cost function is decremented
at each iteration (epoch) by an amount 4Q. This should
be chosen adaptively, so that the accumulated changes to
the nonnegative cost function after a number of epochs
should suffice to achieve the desired input—output relation.

« In addition, certain conditions should be satisfied at each
epoch of the training algorithm. These include the archi-
tectural constraints, as well as additional conditions repre-
senting desirable information about the learning process.
In particular, the following should be met:

1) The architectural constraints

fi(0,w) = g(z wiPol” ”) ol =0 (6)
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should be satisfied. Here g is the logistic function
g(z) = 1/(1 + exp(—xr)) and biases are treated
as weights emanating from nodes of constant,
pattern-independent activation equal to one.

2) Maximum change should be achieved for & =
® + Py + P4, thus favoring correlation of the hid-
den unit outputs to output layer errors, enhance-
ment of the alignment of successive weight up-
dates, and elimination of excessive hidden nodes.

3) Finally, the condition ®; = 0 should be satisfied.

If P is small enough, the changes to £ and ® induced
by changes in the weights can be approximated by the first
differentials E and d®. This problem is related to the gradient
ascent method for solving nonlinear programming problems
proposed by Bryson and Denham [43]. Recent attempts along
the same direction can be found in [50] and [51]. We note
that the weight changes at each epoch of the learning process,
considered as the independent variables, can be determined
by solving analytically the following constrained optimization
problem.

Maximize, with respect to all dw
the constraints

) the function d®, under

dE = 6Q 7
;=0 (8)

and
f"“’ = 0. ©)

V. DERIVATION OF ALECO

The constrained maximization problem defined by (7)—(%9)
can be solved by considering the admissible variations of ®
and E, d® and dF, respectively, subject to the architectural
constraints (9). This can be achieved by introducing suitable
Lagrange multipliers. Hence, we construct the functions

ipm
jpm

where the Ag and \p are Lagrange multipliers to be deter-
mined in due course.

Consider the differentials

de:Z de

fm)

o+ T 5 @
(m} ("1 -

P 8 S Dl |
j : d¢ m : : a4 ) a

jom 90}, m wi |,

We choose the Ag and Ae s0 as to eliminate all dependence
of de and d¢ on the OE:‘)

=0. (14)
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This leads to closed formulas for determining the Lagrange
multipliers. From (6), (10), and (11) we readily obtain

AJP(M“-U O(M'H)

- T (15)
jp(a+1) _ 09
Ao ao(M«H) (16)
/\ig(m) s ZAJp(mH)wSﬂH) )
;
ot (1-05*9| ). m=12,..,M
(17
tp(m) _‘.'P(m"'l} (“’H‘l)
A 3 (m) +Z ¢
oy (1—05-;‘*” ) m=L2em
(18)

The Lagrange multipliers can thus be determined in the
following systematic way: Multipliers corresponding to the
uput layer are evaluated. Multipliers of the mth layer are
.<adily determined once the ones corresponding to the (m +
1)th layer have been evaluated. This procedure can be con-
sidered as a “backpropagation” of the Lagrange multiplier
values.

Differentiating (10) and (11) with respect to the synap-
tic weights and having eliminated all dependence on O(m)
we obtain the following equations for points satisfying the
architectural constraints

dE=de= 3 Jymdw(,

ijm

4% = dg = ZF,,mdwf"‘)

tjm

(19)
with

jp(m) ~(m) _
,Jm—ZA 0} % .:(1

Pl
tJ !

c) O‘(;n-l)|c (20)

F;Jm = wfr)

c

- oim ) =0 . e
(1-0] Jos) e

We are ready now to return back and analytically solve the
constrained optimization problem of (7)—9) at each epoch, for
the points satisfying the architectural constraints. To this end,
we introduce Lagrange multipliers A; and A, to take account
of the remaining constraints in this problem [(7) and (8)]

+ A (5@ -3 J,dewf“")

ijm

-3 dw( f;“)} , (22)

iym

g =d® = Fjmdw

ijm

+Xo | (6P)?

Note that the quantities multiplying A; and X, are equal to
zero by (7), (8), and (19) and that §P and §Q are known
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quantities. We obtain maximum change in ® at each iteration
of the algorithm by ensuring that

P® =3 (Fiym = A

Ijm = QAZdTUE;n))dZwE;n) =D

ijm
(23)
P =-2xY Puwl i <o, 24)
ijm
To satisfy (23) we set
m) _ _M 1
dw;; = T oy Jijm + Z\‘;stm- (25)

The coefficients of J;jm and F};,, are changed adaptively. To
see this, we use (8), (19), and (25) to obtain

Mo = 1{155(513)2 : (6@)2}“”"
=g IseIge — IE,
= (Igs = 2026Q)/IcE (26)
where

Ie =) (Jijm)’ (27)

ijm
Iee = ) JijmFijm (28)

ijm
Ise = ) _ (Fijm)* (29)

ijm

and the positive square root value was chosen for A, to ensure
maximum (rather than minimum) d® (relation 24).

Note the bound |6Q| < §P+/Tg set on the value of 6Q by
(26), which forces us to choose 6§Q adaptively. The simplest
choice for adapting §Q, namely

6Q = —§6P+/Igk,

Is most attractive because of its learning convergence proper-
ties. Indeed, as in BP, it is possible to show for small enough
6P that the algorithm converges to global or local minima of
the cost function of (5). To see this, we use (12), (19), and
(27) to rewrite (30) as follows

0<éxl (30)

07 1/2

) : (31)

Hence, it suffices to show that for a given positive real number
n there exists an epoch number vy, so that |ae/aw(’“)1 < 7 for
all subsequent epochs. Indeed, in the opposite case, an infinity
of changes in E at least equal to —£n6P would accumulate
and drive E to minus infinity as learning progressed. This is
not possible, since E is bounded from below by zero.

In short, (25) describes the weight updating formula of
ALECO, which optimizes the weight steps in each epoch and
converges to minima of the cost function. Taking into account
(30) we are left with two free learning parameters 6P and £
which should be adjusted to achieve optimum performance.

6Q = —&5P |3 (5?7%

ijm 3]
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V1. EXPERIMENTAL STUDY: METHODOLOGY

At present. there is no general agreement in the neural
network community on how to measure the performance of
the various training algorithms in terms of either their speed
[8]. [52] or their generalization capability. In this section
we address five major aspects of this methodology problem:
Selection of algorithms for comparison. benchmark selection,
organization of the experiments, means of attaining adequate
statistical significance for the results, and selection of leaming
parameters. Qur experimental study is carefully designed and
carried our in the light of this discussion on methodology.

A. Selection and Implementation of Algorithms

Although it is impossible to compare ALECO with the
vast number of supervised learning algorithms proposed in
the literature, we have chosen to compare it not only with BP
(off-line und on-line version), but also with algorithms which
reputedly improve its performance significantly. We have
selected representative. well-known, and reputedly successful
algorithms which have fixed and predefined model architec-
ture—so we have excluded methods like cascade correlation
[44], whereby the network size is expressly varied during
learning. These algorithms are the Quickprop [3] and Delta-
Bar-Delta [29] learning rules.

We have used our own FNN algorithm simulation program
developed at NCSR “Demokritos,” which is described in
detail in [33]. Algorithms were implemented on the SUN-
sparcstation network of NCSR “"Demokritos” for small-scale
benchmarks, while for large-scale benchmarks we used the Sil-
icon Graphics Crimson as well as the supercomputer Convex
3820 of the same research center.

B. Benchmark Selection and Description

At present, the research effort for devising appropriate
benchmark models to compare different training algorithms
is at its beginning, und there is no wide consensus about the
proposed benchmarks. Nevertheless, the general tendency in
the literature is employment of artificial binary benchmarks
(see, e.g., [8]) and large-scale real-world classification tasks
(see, e.g, [32]). Binury benchmark problems—encoder [8],
(23], [32], [54], counter [23], and muluplexer [29]—are the
ones that most authors are in favor of, especially in the
case of training algorithm comparisons with respect to their
convergence abilities and leaming speed. An attractive feature
of these benchmarks is their flexibility: Simple algorithms
can be used to produce encoders, counters, and multiplexers
of arbitrary size, complexity. and difficulty, thus providing
strict tests for convergence abilities, learning speed, and scal-
ability properties. Another characteristic of these tasks 1s
that, although amificial, they give a good insight about the
performance of training algorithms in real-world tasks. This
is especially true tor encoders (8], Real-world classification
problems are considered mainly when the primary interest is in
generalization capability of the training algorithms [32], [33],
[55]. Among them, OCR-related problems are the most widely
used. In addition, if*is very difficult to reach perfect general-
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ization in OCR-related tasks and even a small improvement
is of great practical importance—particularly when classifica-
tion accuracy already achieved is very high—provided that
statistical significance of the results is guaranteed.

In this experimental study we evaluate all training algo-
rithms in three categories of experiments. The first category
includes small-scale experiments. while the second includes
large-scale problems involving either a large number of synap-
tic weights or a large number of patterns in the training set.
In both categories we employ binary benchmarks and evaluate
the performance of the algorithms concerning leaming speed
and avoidance of local minima. Finally, the third category
includes a large-scale classification problem related to OCR,
the objective being to evaluate generalization capabilities as
well as convergence abilities of the training algorithms tried.
In our small-scale experiments we include a counter (to be
solved by a 4-5-5 FNN architecture), a multiplexer (6-6-1
architecture with 64 input patterns), and an encoder problem
(“strict” encoder with 8-3-8 architecture). We also use XOR,
the well-known and popular benchmark, because of historical
reasons [56]. In general, these are the benchmarks used by the
authors of the algorithms to which we compare ALECO. In
this way we ensure performance evaluation of ALECO in the
environment proved to be best for the other algorithms. On
the other hand, in our large-scale experiments we include a
multiplexer (11-11-1 architecture with 2048 input patterns) and
two encoder problems (two “strict” encoders with 128-7-128
and 256-8-256 architectures, respectively).

Finally, the third category of our experiments involves
an OCR-related task for lowercase Greek typeset characters.
The main difficulties that a classifier has to overcome in
OCR for typeset characters are random noise of unknown
probability distribution and deformations due to deficien-
cies encountered in printing, photocopying, and scanning of
documents. Problems due to rotation are not normally met.
Therefore, this experimental study aims mainly at comparing
the generalization capabilities of different FNN classifiers in
the case of noisy (with no model assumption for noise) and
deformed patterns.

In all OCR-related experiments we use the same prepro-
cessing, segmentation, and normalization regulations. A filter
is used to remove pixel regions under a certain threshold (noise
regions), horizontal and vertical vacant lines segmentation is
performed, and a 235 x 25 pixel normalization is used with the
character width as the width boundary and the boundary of
the text line as the height boundary.

Regarding feature extraction. the demand for preliminary
filiering and efficient image encoding led directly to the
employment of the Laplactan pyramid theory [57]. In the
proposed OCR benchmark a one-level Gaussian pyramid was
used in the feature extraction stage with the following char-
acteristics:

* Two generating kernels (Gaussian masks), were used (5,

a five-by-five mask. and h,, a four-by-four mask). The
pattern of weights A(m, n) of the generating kernels was
chosen subject to the constraints of normalization and
equal contribution for the different levels [58], as well as
equality for all weights at a given level,
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» We have convolved each original rastered character image
with the two above mentioned generating kemels, ks and
hy4, separately. The input of the classifier is obtained
by keeping the most important terms of the two con-
volution series. This scheme takes into account different
correlations of the neighboring image pixels and achieves
higher dimensionality reduction rates than the convolution
scheme proposed in [57].

The feature extraction stage results in the construction of 41
convolutional features per character. These features are input
to a fully connected FNN with two layers of weights and a
41-40-32 architecture. Using different training algorithms, the
network is trained to assign the convolutional features to one of
32 character categories. The desired output of all output nodes
is zero, except for the node associated with the category of the
input character, whose desired output is one.

For reasons of fair comparison, all experiments were con-
ducted using the same character sets for training and recogni-
tion. At each training trial, the final weights used for testing
were those for which recognition accuracy in a “validation set”
nf characters had reached its maximum value during training.

.e training, validation, and test character set of continuous
valued convolutional features were obtained as follows:

* The union of three artificial databases containing charac-
ters of arial, arc, and times fonts (total of 960 characters)
forms our training set. Each of the arc, arial, and times
MS Windows 3.1 database has been obtained by using
an HP scanner at 300 dpi resolution, with the default
contrast regulation in the scanning software, to binarize a
text printed from an HP printer with 320 characters (32
classes with 10 prototypes each).

* Our validation set similarly comprised the union of arial,
arc, and times artificial character databases (total of 960
characters) as in the training set above. Instead of using
the default contrast regulation in the scanning software,
however, we have utilized a different one for producing
the validation character database by employing the same
procedure as in the construction of the training set.

* Three natural sets of arc, arial, and times fonts (total of
4647 characters) and an artificial character set of courier
fonts (total of 320 characters) were used as test sets. These
recognition sets have the following specifications:

Textl set: The scanner, printer, and scanning software
contrast regulation were different from those used in the
training and validation sets. We had 1554 characters in a
plain text of MS Windows 3.1 arial and arc fonts.
Text2 set: We had different scanner, printer, and contrast
regulation from those used in the training and validation
sets. The character set consisted of 1508 characters in a
plain text of MS Windows 3.1 times font.

Text3 set: The scanner and printer were different from
those used in the training and validation sets, but the
contrast regulation was the same as in the training phase.
We had 1585 characters in a plain text of MS Windows
3.1 arial font

Courier set: The scanner, printer, and scanning software
~rneeact raonlarion were those used in the rraining phase.
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We had one database with 320 characters (32 classes
with 10 prototypes each) of MS Windows 3.1 courier
font. None of the FNN used in the test phase experiments
has been trained with this character font. The aim of this
experiment is to evaluate the generalization performance
of the algorithms in comparison, in a completely different
font than the ones included in the training set.

C. Organization of the Experiments

Three major problems plague several authors™ reports on
experimental results in FNN leamning. Often, insufficient infor-
mation is provided for other researchers wishing to reproduce
the experiments or compare the proposed method with others
(52]. On other occasions, conclusions about algorithm per-
formance are drawn from insufficient statistics. Finally, the
comparison of reports is often difficult because of nonunifor-
mity in convergence or generalization criteria. In effect. results
quoted by different authors on the performance of the same
training algorithm tested on the same training task sometimes
differ by orders of magnitude (see, for example. the XOR
comparison tests in the reports of [8] and [29] on the one
hand and of [59] on the other). The crucial issue here is the
task of building a uniform environment to fairly compare all
algorithms. We believe that we would have more order in the
chaos of neural-network comparison reports if this task had
been considered by all authors as seriously as by Jacobs [29]
and Fahlman [8].

Using the work of these authors as our starting point, we
build a uniform environment for experimenting with FNN.
Thus, all information relevant to a particular experiment
is reported, which would be of use to other researchers
wishing to reproduce our results or compare our algorithm to
other methods. Benchmark or algorithm specific factors and
parameter values are reported in the section on experimental
results (Section VII) individually for each algorithm and
benchmark. Moreover, certain factors and parameter values
are kept the same for all algorithms and benchmarks to ensure
uniformity and fair comparison. These are considered and
reported as follows:

* The type of unit activation function used and its parame-
ters. The importance of this factor can be found in many
studies. For example, see [60] and [61]. We have used
the sigmoid logistic function g(z) = 1/(1 +exp(—z)) as
activation function for every FNN processing unit.

« The weight initialization procedure. The importance of
this factor is described in [8]. We use random initial
weights with uniform distribution in [-r,r]. A fixed
r,r = 0.5, was used for all algorithms and for all
experiments tried. At each individual trial, the same initial
weights were used for all algorithms.

* The cost function to be minimized. The significance of the
choice of this function is well documented in the literature
[8] and [23]. For reasons of fair comparison, we have
used the quadratic cost function (5) in all experiments
performed.

+ The order according to which the waining set is presented
at each epoch to the input layer of the network. The
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significance of this parameter is discussed in [62] and
[63]. In all experiments, we use a fixed order of pattern
presentation for all epochs. For the binary type bench-
marks. all patterns are presented sequentially indexed in
their categories at each epoch.

« The convergence criterion. We have adopted Fahlman's
0.4-0.6 criterion as the most sensible for all benchmarks
tried here [8].

« Other critical parameters used in the unit or net ar-
chitecture. We have accepted Fahlman’s analysis about
eliminating the “flat spot” [8], and added the parameter
S’ = 0.1, whenever the product O§?’(l - O;;n)) (the
derivative of the logistic function) was encountered for
every experiment and algorithm. This had an accelerating
effect on all algorithms.

D. Statistical Significance of Experimental Results

Two factors are important for ensuring statistical signifi-
cance of the experimental results, namely number of experi-
—ental trials, that is, number of training trials starting from
_.fferent initial points in the weight space, and maximum
allowed percentage of failures. The importance of the first
factor is partially described in [8] and [52], while reporting of
the second factor is first introduced in this work. Their role
1s analyzed next. :

In the majority of FNN training algorithms, trials are started
by random initialization of the weights. The search for a
minimum of the cost function varies in terms of difficulty at
each trial. Therefore, it is very important to test our algorithms
for a sufficient number of trials to ensure an adequate level of
statistical significance for our results and a fair comparison of

- different training algorithms.

The ratio Ps of successful to total number of learning
trials is closely related to the problem of local minima.
Since all presently known successful training algorithms are
based essentially on local optimization techniques of the
almost never convex cost function, there is no warranty of
convergence at the global optimum for every training trial.

-erefore, one should decide a priori about an acceptable
level of allowed failures of convergence especially if learning
speed and avoidance of local minima is of primary concern.
The learning parameters should then be chosen to achieve both
this level and the best possible results in the successful trials.
In our experiments we have always chosen suitable parameters
to achieve a minimum of P, = 0.70.

We propose that a test of statistical significance should be
performed at least on the average number of epochs needed to
successfully complete a training task, as well as on the average
classification accuracy obtained by each algorithm.

Concering the small- and large-scale experiments used to
test learning speed, we have been able to perform enough
experimental trials to ensure at least with 99% probability
that the experimental average number M of epochs needed to
successfully complete each task differed from the true average
by less than 10%. At this level of statistical significance, we
can obtain a good quantitative measure for the relative learning
speed improvement offered by ALECO over other training al-
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gonithms. To determine the minimum number v,,;, of training
trials required to achieve this level of statistical significance,
we have used the central limit theorem of probability theory.
Indeed, it can be shown (see the Appendix) that an estimate
of ¥mi, required to obtain a value of M differing from the
true expected value M of the distribution of the number of
epochs by less than a fraction v of M with probability greater
or equal to b is given by

e R e s .
Venin & (I/?) = [t ™' 0]
where

2 = o
T = — Xp (—u” 2
erf(z) \/?/u exp (—u?)du. (32)
Our experimental results show that for the same training
task, different training algorithms yield significantly differing
values of (¢/AM)?2. Hence, to achieve a given level of statisti-
cal significance, different algorithms may require performing
substantially differing numbers of learning trials.
Concerning generalization capability, the major issue is to
decide which of two ANN classifiers is better than the other.
This can be readily achieved by performing Student’s ¢ test on
the differences of the mean values of their classification accu-
racy distributions. By applying Student’s ¢ test, we made sure
in our OCR-related experiments that the number of learning
trials was enough to ensure at least with 95% probability the
truth of the hypothesis that ALECO is a better classifier than
the other algorithms tried. To obtain statistically significant
quantitative estimates of the degree of generalization improve-
ment offered by the better algorithm, we could in principle
apply formula 32 with M and o denoting the average and
standard deviation of the classification accuracy distribution
obtained by each algorithm. A small v would be required,
however, to obtain very clearly separated averages for different
algorithms, and this would lead to a prohibitively large number
of learning trials.

E. Selection of Learning Parameters

Each of the algorithms employed in this work has its own
learning parameters, summarized here to establish notation.

* BP (on/off-line): The learning rate ¢ and the momentum
factor « [6], [7], [60].

* Quickprop: The learning rate ¢, the momentum factor e,
the maximum growth factor ., and the weight decay term
w [8].

* Delta-Bar-Delta: The learning rate ¢, the learning rate
increment «, the learning rate proportion decrement (7,
the base of the exponential average of the derivatives 6,
and the momentum factor o [29].

* ALECO: The parameters 6P and £ defined in Sections
IV and V.

A fair comparison requires that the best learning parameter
values be chosen for each algorithm and benchmark {23], (52].
Thus, learning parameters are adjusted, taking into account
the guidelines of the algorithms’ authors. to achieve the best
possible performance concerning either avoidance of local
minima and learning speed or generalization capability.
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If learning speed and avoidance of local minima is eval-
uated, results are considered optimal when small minima
and averages for the number of epochs needed to complete
each benchmark task are obtained, subject to the condition
that at least 70% of the experimental trials have passed the
0.4-0.6 convergence criterion. Both minima and averages can
be important for learning speed evaluation. In the literature
there exist two approaches, reported in [29] and [8], respec-
tively. The first approach favors methods which give better
values of M while the second, using the restart procedure,
favors algorithms which give better minima of the number of
epochs. Which of these is a better measure of leaming speed
performance depends heavily on the shape of the distribution
of epochs needed to successfully complete a task. For example,
it is clearly desirable that an algorithm exhibit a small o to M
ratio; it is then reliable in its performance as regards learning
speed and M is an adequate parameter by which to judge
performance. On the other hand, if /M is of the order of
M or larger, the distribution will extend far beyond its peak
toward infinity and the peak can be closer to the minimum
number of epochs than to AM. This minimum may then be

1sidered as a better measure of learning speed, provided that
u:¢ user of the algorithm is prepared to disregard the trouble
caused by trials in which an excessive number of epochs is
needed to achieve convergence.

If generalization capability is our prime concern (as in the
OCR experiment), results are considered optimal when large
minima and averages, but small standard deviations in the
distributions of classification accuracy, are obtained. In the
literature, not many reports pay due attention to the statistical
nature of the results and the reliability of the classifiers. When
classification accuracy distribution is considered (see, e.g.,
[17]), usually only its average is reported. The reliability of
an FNN classifier, however, clearly depends on the standard
deviation of its classification accuracy distribution.

VII. EXPERIMENTAL STUDY: RESULTS

A. Presentation of the Results

Jetailed experimental results on the performance of
ALECO and the other supervised learning algorithms
mentioned in Section VI-A are presented in Tables I-VIIL
In particular, Tables I-IV refer to small-scale binary
benchmarks, while Tables V-VII show results on large-
scale binary benchmarks. Finally, Table VIII summarizes our
generalization performance results regarding the OCR-related
task.

In each table sufficient information is given which allows
other researchers to reproduce our results (taking into account
the factors common for all algorithms and benchmarks re-
ported in Section VI-C). Thus, a brief benchmark description
is given (benchmark identification, number of patterns and
categories, reference where a full description can be found,
if any), the architecture of the FNN which is called upon to
solve the benchmark is described, the leamning parameters used
for each algorithm are reported, the maximum allowed number
of epochs before declaration of failure is shown, and finally,
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the number of trials performed for each algorithm to ensure
the minimum required level of statistical significance (Section
VI-D) is given.

In reporting our results, we have tried to be as informative
as possible, giving detailed information abofit the distribution
of the quantity of interest (number of epochs or classification
accuracy). Detailed results are shown including the percentage
of successful and unsuccessful trials; the mean, standard
deviation, minimum, and maximum of the epoch distribution
in successful learning trials in the binary benchmarks, where
learning speed is the major objective (Tables I-VII); and the
mean, standard deviation, minimum, and maximum of the
classification accuracy distribution in successful and failed
learning trials in the case of the OCR-related experiment
(Table VTII).

Our presentation of learning speed results implies that the
epoch has been chosen as an appropriate unit by which to
measure leamning time. In principle, leaming speed can be
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valuated using either the concept of epoch, which is widely
accepted, or similar ones 8], or the concept of computational
complexity as partially involved in [63]. In terms of complex-
ity in the weight update calculations involved in one epoch, our
experiments verified that there are no great differences between
the algorithms tested. We believe that the epoch, apart from
being a convenient and generally accepted unit for measuring
learning time [8], is also compatible with the concept of the
“100-step program” constraint [64] extended in the training
procedure. In biological learning, the number of “training set”
presentations involved in a learning task is a small number
rather than a number of the order of thousands. Moreover,
we can assume that whenever exponential time is involved
in computations within the same epoch, neural networks (the
biological ones, and also the models we investigate) may be
able to provide speed at the cost of an excessive network size
[65]. For these reasons we have adopted the epoch as the unit
to be used in our study.

B. Discussion of the Results

Evidently, ALECO outperforms off-line BP in all four
small-scale benchmarks in terms of learning speed and avoid-
ance of local minima. Ratios of the average number of epochs
needed to solve the tasks using the two algorithms range
from 4.32 in the 4-5-5 counter problem to 1.94 in the XOR
problem, always in favor of ALECO. The corresponding ratios
for the minimum number of epochs needed to solve these tasks
range from 3.29 in the 8-3-8 encoder to 1.64 in the 6-6-1
multiplexer. Moreover, our method also achieves much faster
learning than on-line BP, Quickprop, and Delta-Bar-Delta:
Much better averages are obtained than these three algorithms
for all benchmarks; the minimum number of epochs is much
better than that achieved by Delta-Bar-Delta and on-line BP in
all cases and better or, at worst, comparable to that achieved
by Quickprop. Compared to the other methods as regards
the percentage of successful leaming trials, ALECO clearly
exhibits improved performance. It outperforms all algorithms
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TABLE VI
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in all cases, except in the encoder problem where no failures
-e encountered by all algorithms.

Results in the three large-scale benchmarks can be summa-
rized as follows:

» Concemning convergence ability, we notice that off-line
BP, Quickprop, and Delta-Bar-Delta cannot converge at
all in the benchmarks tried within the specified limit of
epochs until failure. By contrast, on-line BP and ALECO
exhibit good convergence ability in all three tasks tried,
with ALECO slightly outperforming on-line BP in the
11-11-1 multiplexer problem. '

» Conceming learning speed, measured either by the av-
erage or the minimum of the distribution of epochs
needed to successfully complete a task, ALECO clearly
outperforms its closest rival (on-line BP) in all tasks by,
approximately, a factor of two.

* ALECO exhibits a relatively small standard deviation in
the distribution of epochs needed to successfully com-
plete a task, thus exhibiting reliability of performance as
regards learning speed.

These results are in compliance with work by Fogelman
Soulie [14] reporting that on-line BP exhibits very good
learning abilities in large-scale problems. Moreover, they
demonstrate the emergence of an excellent new training al-
gorithm, ALECO, for large-scale networks and problems.

Results in the OCR-related task can be summarized as
follows:

 Concemning classification accuracy and reliability in gen-
eralization performance, we notice that ALECO outper-
forms both on-line BP and Quickprop, while off-line
BP and Delta-Bar-Delta give insignificant generaliza-
tion results. More specifically, we notice that ALECO
improves the mean classification error of on-line BP
by a factor ranging from 1.12 to 2.2, and the mean
classification error of Quickprop by a factor ranging from
1.15 to 2.56. Moreover, ALECO is much better than the
other algorithms not only exhibiting large minima in its
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classification accuracy distribution but also small standard
deviations. It is thus a more reliable classifier.

= Concerning convergence ability, we notice that off-line
BP and Delta-Bar-Delta cannot converge at all in this
benchmark, within the specified limit of epochs until
failure, while Quickprop converges only in the 2% of
the trials tried (although it is capable of learning most
patterns, as reflected in its acceptable classification accu-
racy). By contrast, on-line BP and ALECO exhibit very
good convergence ability.

» Concemning learning speed, measured by the average of
the distribution of epochs needed to successfully complete
this task, ALECO outperforms on-line BP by a factor of
1.15, even though learning parameters were chosen to
ensure optimal generalization rather than learning speed
(on-line BP solves the problem in 120 epochs on average,
while ALECO solves it in 105 epochs).

Practical guidelines can be given for selecting optimal
values for the learning parameters § P and £: For all small-scale
benchmarks, similar performances were recorded with 0.5 <
£ <09and 1.0 < 6P < 2.0, indicating that results are not
very sensitive to the exact values of the parameters. Following
the example of Jacobs [29], we performed additional runs of
ALECO using common values (6P = 1.5 and £ = 0.85)
for all four benchmarks. Deterioration of the mean number of
epochs, compared to the optimal values shown in Tables [-IV,
was never more than 30%. Larger-scale problems are more
sensitive to the selection of § P, but not to the selection of £
for which a value around 0.5 works well for all benchmarks.

VIII. CONCLUSION

In this paper, an efficient training algorithm for FNN
was proposed incorporating suitable construction of internal
representations and momentum acceleration in its formalism
and exhibiting the following attractive features:

* Solid theoretical background, based on rigorous nonlinear
programming techniques.

* Proved convergence to global or local minima of the mean
square error cost function for small enough learning step.
This property is shared with the BP algorithm, but not
with some of its descendants of heuristic origin.

= Faster learning than the BP algorithm, from which it is in-
spired, and from other reputedly fast training algorithms.

+ Efficiency in avoiding local minima.

» Good scalability properties.

= Improved generalization capability.

To confirm the existence of such properties in FNN, when
they are trained using ALECO, experiments involving binary
benchmarks of small and large scale, as well as a large-scale
OCR-related problem, were carefully designed and carried
out. ALECO was found to outperform BP and some of its
reputedly successful descendants regarding important learning
properties, viz. learning speed, avoidance of local minima and
generalization capability.

Clearly, ALECO represents the first step in a long-term
program of research on the problem of incorporating different
kinds of information in FNN training algorithms using rigorous
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TABLE VIII
ExperIMENTAL RESULTS FOR THE OCR PrROBLEM DEeFNED tN THE TEXT
Exparimsat Type: OCR Categeries: I2 Input samplee: 360 Raf: =
WFIE
eystea impat uaita: 41 hidden layess: 1 hidden uaits: 40 sutput mates: I2
architscturas .
Algerithas ALECD On BP are 8P Quickprap Dalta-dar-Delta
Learniag 6P =04 e=04 No cnvergence ¢=04 No convergence
Paramatars E=104 a =105 Generalization < 10% a=05 Generalization « 10%
Ragimam
allswed aumbar 500
af spocha
Triala 50 50 50 50 50
Saccasses (L) 100.0 100.0 0.0 20 0.0
Failares (1) 0.0 0.0 100.0 33.0 100.0
Mean Accuracy/Mean Classification Error %
Canriar 80.14/19.86 | T7.79/22.21 77.05/22.95
Tazt-1 99.34/0.66 99.19/0.81 98.99/1.01
Taxe-1 99.15/0.85 98.48/1.52 97.77/2.23
Tezt-3 99.76/0.24 | 99.47/0.53 99.59/0.41
Stdv %
Caurier 1.60 3,84
Taze=1 0.29 0.40 0.40
Teze=2 0.26 0.44 1.00
Tezc=1 l] 12 037 .23
Min accuracy/Max dassification error %
Caurter 76.50/23.50 | T4.06/25.94 67.81/32.19
Tasc=L 98.64/1.36 | 97.49/2.51 97.87/2.13
Text-2 98.10/1.90 97.21/2.79 92.70/7.30
Test-3 99.37/0.63 | 97.28/2.72 98.80/1.20
-Max dassification accuracy %
Cancier 82,93 8L.25 83.90
Tazz=1 99.90 99.87 99.74
Taze-1 99.54 99.07 99.20
Text=1 99.94 99.87 99.90

constrained optimization techniques. It is the concerted incor-
poration of such detailed information into the same algorithm
which will hopefully eliminate the need for heuristics and lead
to increasingly efficient FINN training schemes.

APPENDIX

Let us denote by e; the value of the stochastic variable in

consideration (e.g., number of epochs needed to successfully-

complete a task), recorded in the ith successful trial. The
expected value of any of the e; represents the “true” average
M of the stochastic variable distribution. Moreover, let &
denote the standard deviation of any of the e;. According
to the central limit theorem, the distribution of the sample
average M = (e; + ey + --- 4+ e,)/v for a sufficiently large
number v of independent trials tends to the normal distribution
N(M,Z//v). It follows that (M — M)/vZ~" tends to the
normal distribution N (0, 1). It is required that the probability

PlIM = K1 <4M]

=P[iM - MVVET <A MpET] (33)
be greater or equal to b. Therefore
2 +AM STt ;
o /0 _ exp(—t?/2)dt > b (34)

which can be rewritten as

TMv )
erf(*-—-———-ﬁz > b. (35)

By substituting A and £ by their experimentally determined
estimates M and o, we readily obtain the experimental
estimate given by (32) for the minimum number v;, of trals
required to achieve the desired level of statistical significance
for M.
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