
Contributed Article

Dynamics of multilayer networks in the vicinity of temporary minima

Nikolaos Ampazisa, S.J. Perantonisa, J.G. Taylorb,*
aInstitute of Informatics and Telecommunications, National Research Center ‘Demokritos’, Athens, Greece

bDepartment of Mathematics, King’s College London, London, UK

Received 27 November 1997; accepted 27 April 1998

Abstract

A dynamical system model is derived for a single-output, two-layer neural network, which learns according to the back-propagation
algorithm. Particular emphasis is placed on the analysis of the occurrence of temporary minima. The Jacobian matrix of the system is derived,
whose eigenvalues characterize the evolution of learning. Temporary minima correspond to critical points of the phase plane trajectories, and
the bifurcation of the Jacobian matrix eigenvalues signifies their abandonment. Following this analysis, we show that the employment of
constrained optimization methods can decrease the time spent in the vicinity of this type of minima. A number of numerical results illustrates
the analytical conclusions.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:Feed-forward neural networks; Supervised learning; Back-propagation; Temporary minima; Dynamical systems; Jacobian matrix; Eigenvalues;
Constrained optimization

1. Introduction

Most of the analysis of the back-propagation algorithm
for the training of artificial neural networks, has examined
the dynamical behavior of a single-layer, feed-forward
neural network (Minsky and Papert, 1988; Sontag and
Sussmann, 1991) and soft-committee machines (Biehl and
Schwarze, 1995; Saad and Solla, 1995a; Saad and Solla,
1995b). There is, however, little analysis of the learning
behaviour or dynamics during training of a multilayer neural
network, with sigmoidal activation functions for all its
nodes and with no restrictions imposed on any of its
weights. Indeed, the convergence properties and the
encounter of undesired minima of the back-propagation
algorithm are generally derived by simulations, because
mathematical analysis of the dynamics of non-linear sys-
tems such as a multilayer neural network is very compli-
cated. To the best of our knowledge, in only one paper, a
mathematical analysis of the dynamics of a feed-forward
multilayer network has been published (Guo and Gelfand,
1991), in which a variation of the describing function
method (Graham and McRuer, 1961; Gelb and Vander
Velde, 1968) is applied in order to derive a simplified,
non-linear, deterministic system. There has also been a
number of publications that provide analytic solutions for

the identification of local minima in specific problems
(Lisboa and Perantonis, 1991; Sprinkhuizen-Kuyper and
Boers, 1996), as well as general techniques for avoiding
such minima (Gorse et al., 1993, 1997). Related work in
the field includes the mathematical analysis of the phase
transitions of learning, and of the encounter of temporary
minima using geometrical approaches such as a vector
decomposition method [Annema, J., Hoen, K., & Wallinga,
H. (1994). Unpublished]. Still, however, a more detailed
analysis of the dynamical behaviour of multilayer neural
networks is needed, particularly one that can contribute to
the understanding of the fundamental principles involved in
learning, such as the occurrence of undesired minima.

It has already been shown [Annema, J., Hoen, K., &
Wallinga, H. (1994). Unpublished] that temporary minima
result from the development of internal symmetries and
from the subsequent building of redundancy in the hidden
layer. These types of minima are the most troublesome,
because they correspond to almost flat plateaus of the cost
function landscape. If the back-propagation system gets
stuck during training on such a plateau, it usually takes a
very long time to find its way down the cost function sur-
face. Eventually the network may be able to escape, but
performance improvement in these minima drops to a
very low, but non-zero level, because of the very low gra-
dient of the cost function. A temporary minimum can be
recognized in the mean square error (MSE) versus epoch* Corresponding author. E-mail: john.g.taylor@kcl.ac.uk

0893–6080/99/$ -see front matterq 1999 Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(98)00103-8

Neural Networks 12 (1999) 43–58PERGAMON

Neural
Networks

curve, as an approximately flat part in which the MSE is
virtually constant for a long training time after some initial
learning. After a generally large number of epochs, this part
in the energy landscape is abandoned, resulting in a signifi-
cant and sudden drop in the MSE curve (Woods, 1988;
Murray, 1991).

For the explanation of the dynamical behaviour of back-
propagation, and in particular of the fundamental processes
behind the occurrence of temporary minima, we propose
that the derivation of a dynamical system model may pro-
vide a valuable insight into these important issues. In this
paper, we are considering a two-layer network trained with
the back-propagation algorithm. The network has an arbi-
trary number of input units, two units in the hidden layer and
one output unit. Motivated by the connection between tem-
porary minima and the build-up of redundancy, we intro-
duce suitable state variables and linearization conditions,
and we derive a linear dynamical system model which
describes the dynamics of the back-propagation system in
the vicinity of temporary minima. Using this model we
study specific training tasks and find that the learning behav-
iour of the neural network can be explained as follows:
temporary minima correspond to the phases during which
the network remains in the vicinity of critical points of the
phase plane trajectories, which are actually saddle points.
These points, however, correspond to non-optimal solutions
of the training problem. In these phases, the network is
unable to move away from the critical points, because the
largest eigenvalue of the Jacobian matrix of the linearized
system is very small and, therefore, the system evolves very
slowly. However, as training continues, small perturbations
applied in the coefficients of the system are reflected in
small perturbations in the eigenvalues, causing them even-
tually to bifurcate. At this point, the largest eigenvalue
becomes large enough in order to allow the system to evolve
at a much faster rate, so that the network rapidly abandons
the minimum and the MSE curve suddenly drops to a sig-
nificantly lower level.

This dynamical system model analysis allows us to speed
up learning by minimizing the training time spent in the
vicinity of temporary minima. To this end, we show that
we can use constrained optimization methods that achieve
simultaneous minimization of the cost function and maxi-
mization of the largest eigenvalue of the Jacobian matrix, in
order to allow the system to evolve much faster. The learn-
ing speed is greatly improved, since the network avoids
being trapped in a temporary minimum and, hence, total
training time is significantly decreased.

Using our approach we study two classification problems,
namely the XOR and the unit square problem. For the XOR
problem in particular, we present a detailed analytical and
experimental study of the network’s behaviour in the vici-
nity of the temporary minimum.

The paper is organized as follows: in Section 2, we draw
attention to temporary minima and provide an overview of
the phase transitions during learning, which are responsible

for their occurrence. Also, the fundamental processes
behind the occurrence of temporary minima are explained
mathematically in terms of the dynamical systems theory,
and the Jacobian matrix of the system is derived. In Section
3, we introduce the constrained optimization method
designed to facilitate learning using the constraints imposed
on the eigenvalues of the Jacobian matrix. In Section 4, the
theoretical results are applied to simple classification prob-
lems, and a comparative study of our constrained learning
approach to a number of well-known training algorithms is
presented. Finally, in Section 5, conclusions are drawn and
future work is outlined.

2. The dynamical model

2.1. Motivation for the model

2.1.1. Derivation of the fundamental differential equations
Let us first consider the two-layer neural network shown

in Fig. 1, which hasN external input signals and one bias
input. The bias signal is identical for all neurons in the net-
work. The hidden layer consists of two neurons, and the
output layer contains one neuron with sigmoid activation
functionsf(s) ¼ 1/[1 þ exp(¹ s)].

Given P training patterns indexed byp, the batch back-
propagation weight update rule for the hidden-to-output
connections gives:

Dwh
i ¼ h

∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))yh(p)
i , i ¼ 0,1,2, (1)

whereh is the learning rate,wh
i are the weight connections

between each hidden nodei and the output node,y(p) is the
output of the network,d(p) is the desired response, andyh(p)

i
are the outputs of each hidden unit (withyh(p)

0 corresponding
to the bias signal). Whenh is small, the difference equations
can be approximated by differential equations in time, with

Fig. 1. A feed-forward network with two hidden nodes.

44 N. Ampazis et al. / Neural Networks 12 (1999) 43–58

the quantities Dwh
i =h representing the rate of change

ẇh
i ¼ dwh

i =dt so that

ẇh
i ¼

∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))yh(p)
i : (2)

The customary practice with the back-propagation algo-
rithm is to set all the free parameters of the network to
random numbers that are uniformly distributed inside a
small range of values. In this way, all units operate in
their linear regions in the early stages of learning and
premature saturation (Lee et al., 1991), if the sigmoid acti-
vation functions are avoided.

From Eq. (2) we can observe that only the last factoryh(p)
i

is different for the update of the differentwh
i . However,

under the condition of very small initial weights, the
responsesyh(p)

i of the neurons in the first layer, are approxi-
mately identical, and, in particular,yh(p)

i < f (0). Therefore,
the weights corresponding to the connections from the hid-
den to the output layer, will adapt identically after the
presentation of all the training examples.

For the input–hidden connections, the back-propagation
weight adaptations are:

ẇik ¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))wh
i f 9(xh(p)

i)x(p)
k , (3)

wherewik represents the weight connection between hidden
nodei and the input nodek,xh(p)

i is the net input fed to the
hidden nodei, andx(p)

k is the signal from the input nodek.
Written in vector notation, Eq. (3) becomes:

ẇi ¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))wh
i f 9(xh(p)

i)x(p), (4)

where

wi ¼ (wi0…w[)T (5)

is the weight vector of each hidden neuroni.
Again, we can observe that the first three factors into the

summation on the right-hand side of Eq. (4) are identical for
all neurons in the first layer. In addition, as the weightswh

i

adapt identically after the presentation of all the training
examples, the weightswh

i are, by good approximation, iden-
tical. The factorf 9(xh

i) < f 9(0) is also identical for all neu-
rons, assuming very small initial weights. Finally, the input
vector for the hidden layerx (p) is fed to all neurons in this
layer and is hence, identical for all neurons. Therefore, in
the beginning of the training and under the condition of very
small initial weights, the weight vectors of the hidden neu-
rons also adapt approximately identically. Thus, the weight
vectors of the units in the hidden layer move towards
approximately identical positions in input space (note, how-
ever, that the weight vectors components will not neccessa-
rily be identical).

Provided that training is successful, the weight vectors of
the neurons in a feed-forward network eventually converge

towards specific attractors in weight space (Parker, 1985;
Guo and Gelfand, 1991). However, as has been shown
analytically [Annema, J., Hoen, K., & Wallinga, H.
(1994). Unpublished], the network surpasses several phases
before it actually converges to a solution. In each of these
different phases, the weight vector attractors in each phase
will generally be different from the previous attractor posi-
tions. The hyperplane corresponding to the weight vector
attractor will be denoted the attractor hyperplane.

From the analysis of Eq. (4), it follows that during the
early stages of learning the attractor hyperplanes of the two
neurons in the hidden layer are coinciding, and, therefore,
these neurons make approximately identical classifications.
In the beginning of training this common attractor, in which
the two hyperplanes coincide, is the hyperplane that seems
to provide the best possible linear discrimination between
the different classes. The position of this attractor in weight
space is independent of the order in which the training
examples are presented, because the batch mode of training
is used. However, the actual attractor depends on the spe-
cific problem and on the initial weights. It is a result of the
coincidence of the attractor hyperplanes of the hidden units
that the network builds up redundancy. This building of
redundancy is an inherent property of back-propagation net-
works due to the nature of the back-propagation weight
update rule. Therefore, after an initial error reduction that
corresponds to the transition of the hidden weight vectors
towards their common attractor hyperplane, the network is
encountering a temporary minimum. This temporary mini-
mum corresponds to the stage of the network where the two
hidden weight vectors coincide completely with their attrac-
tor hyperplane. After this phase, the hidden layer is approxi-
mately reducible to one unit (Sussmann, 1992), and the
weight vectors of the units in the hidden layer are approxi-
mately identical. As learning continues because of the con-
tinuous (but very small) change of all the weights,
eventually the units in the hidden layer start to change to
completely different attractors. In this phase the input space
is subdivided, or partitioned (Liang, 1991), into two parts
each classified by one neuron in the hidden layer. The van-
ishing of redundancy results in escaping from the temporary
minimum (Murray, 1991), and the network finds its way
down the cost function landscape. However, abolishing
the redundancy is generally a slow process and neural net-
works usually ‘stick’ in a temporary minimum during train-
ing, for a relatively long time.

In terms of dynamical systems theory, the learning phases
can be represented as points in the phase plane trajectories
of the dynamics of the network. Therefore, it is essential to
find the critical points of the differential equations govern-
ing the behaviour of the back-propagation system and to
assess their type of stability. Now, for the case of a neural
network trained with the back-propagation algorithm, it
should be clear that it is virtually impossible to analyse
exactly its dynamical behaviour, since it is a very complex
dynamical system. Indeed, there is no general prescription

45N. Ampazis et al. / Neural Networks 12 (1999) 43–58

for finding tractable expressions for equilibrium sets and
trajectories. However, if we succeed in introducing suitable
state variables that map the temporary minimum to the
origin of the phase plane, we can study the dynamical
behaviour of the system in the vicinity of the temporary
minima by linearizing the system around the origin. This
is so because it is well known that non-linear systems of the
form:

ẋi ¼ Fi(x), i ¼ 1, …,M, (6)

can be linearized by considering orbits of the system
close to the origin, assuming thatFi(x) are twice dif-
ferentiable (Coddington and Levinson, 1955; Boyce and
DiPrima, 1986), then the behaviour of the system may, in
general, be approximated locally by that of the linearized
system:

ẋ ¼ Jx, (7)

whereJ is the Jacobian matrix whose elements are given
by:

Jij ¼
]Fi(x)

]xj
: (8)

The eigenvalues of the system are the roots of the poly-
nomial equation

det(J ¹ lI) ¼ 0 (9)

and assuming that the Jacobian matrix is non-singular, i.e.
det(J ¹ lI) Þ 0, it follows thatx ¼ 0 is the only solution of
the equationJx ¼ 0. Consequently,x ¼ 0 is the only critical
point of the system of Eq. (7). The behaviour of the trajec-
tories of the linear system is, therefore, completely deter-
mined by the nature of the eigenvalues ofJ.

Our earlier analysis indicates that in the early stages of
learning, temporary minima occur, because of the building
of redundancy. Therefore, appropriate state variables that
map the temporary minimum to the origin of the phase
plane, are expected to be the difference between the weight
vectors of the hidden units and the difference between the
two non-bias weights of the hidden–output connections.
Hence, with this selection of state variables for the back-
propagation system, we should be able to derive a set of
differential equations of the form of Eq. (6), and to classify
the type of stability of the critical point by calculating the
eigenvalues of its Jacobian matrix. This means that we
should be able to determine whether the system encounters
temporary minima, because the solutions approach or
remain in the vicinity of the critical point and hence, to
derive the conditions under which they would change
their character, by moving away from it and eventually
allowing the system to escape from the temporary mini-
mum. In fact, when we look into specific examples, we
will show that the escape from a temporary minimum cor-
responds to a bifurcation of the eigenvalues of the Jacobian
matrix, as a result of the continuous perturbation of the
coefficients of the system.

2.2. Derivation of the dynamical model

For the state variables mentioned in the previous subsec-
tion, the analysis can proceed as follows.

For the network of Fig. 1 let us define:

2e¼ w1 ¹ w2, 2q ¼ w1 þ w2, (10)

with wi defined in Eq. (5). It follows that

2ė¼ ẇ1 ¹ ẇ2, 2q̇ ¼ ẇ1 þ ẇ2: (11)

Similarly we define

2m ¼ wh
1 ¹ wh

2, 2n ¼ wh
1 þ wh

2: (12)

It also follows that

2ṁ ¼ ẇh
1 ¹ ẇh

2, 2ṅ ¼ ẇh
1 þ ẇh

2: (13)

Hoevever,ẇh
1 andẇh

2 are given by Eq. (2). Substituting these
expressions into the first of Eq. (12) gives:

2ṁ ¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))[yh(p)
1 ¹ yh(p)

2]: (14)

Now, yh(p)
1 andyh(p)

2 are given by:

yh(p)
1 ¼ f (xh(p)

1) ¼ f (
∑

k

w1kx
(p)
k) ¼ f (w1·x(p)) (15)

and

yh(p)
2 ¼ f (xh(p)

2) ¼ f (
∑

k

w2kx
(p)
k) ¼ f (w2·x(p)): (16)

Thus:

2ṁ ¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))[f (w1·x(p)) ¹ f (w2·x(p))]:

(17)

However, from Eq. (10) it follows that

w1 ¼ q þ e, w2 ¼ q ¹ e: (18)

Substituting the above equations into Eq. (17) gives:

2ṁ ¼
∑

p(d(p) ¹ y(p))y(p)(1¹ y(p)){ f [(q þ e)·x(p)]

¹ f [(q ¹ e)·x(p)]} : ð19Þ

Similarly, for ė from the first of Eqs. (11) and (4), we have:

2ė¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))x(p)[wh
1yh(p)

1 (1¹ yh(p)
1)

¹ wh
2yh(p)

2 (1¹ yh(p)
2)]: ð20Þ

However, from Eq. (12) it follows that:

wh
1 ¼ n þ m, wh

2 ¼ n ¹ m: (21)

Substituting Eqs. (21) and (18) into Eq. (20), we obtain:

2ė¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))x(p){ (n þm)f (q þ e)·x(p)� �
3 1¹ f (q þ e)·x(p)� �� �

(n ¹ m)f (q ¹ e)·x(p)� �
3 1¹ f (q ¹ e)·x(p)� �� �

} : ð22Þ

46 N. Ampazis et al. / Neural Networks 12 (1999) 43–58

Eqs. (22) and (19) are of the form:

ė¼ F(e,m), ṁ¼ G(e,m), (23)

and it is clear that if we sete ¼ 0 andm ¼ 0, thenF(e,m) ¼ 0
andG(e,m) ¼ 0, and, therefore, the origin is a critical point
of the system. Moreover,F(e,m) and G(e,m) are twice-
differentiable and we can, therefore, proceed with the
linearization of the system.

In Eq. (19), for the termsf[(q 6 e)·x (p)], we can use
Taylor’s theorem for the approximation off close to the
pointq·x (p). Then, keeping only first-order terms, we obtain:

f [(q 6 e)·x(p)] ¼ f (q·x(p)) 6 e·x(p)f 9(q·x(p)): (24)

Now, since the activation function is the sigmoidfunction,
its derivative is given by:

f 9(q·x(p)) ¼ f (q·x(p))[1¹ f (q·x(p))]: (25)

Thus:

f [(q 6 e)·x(p)] ¼ f (q·x(p)) 6 e·x(p)f (q·x(p))[1¹ f (q·x(p))]:
(26)

Substituting this result into Eq. (19) finally gives the follow-
ing expression foṙm:

ṁ¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))e·x(p)f (q·x(p))[1¹ f (q·x(p))]:

(27)

Similarly, for Eq. (22), using Taylor’s approximation for
f[(q 6 e)·x (p)], and ignoring all terms quadratic ine, gives:

2ė¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))x(p)·{ (n þ m)

3
�
f (q·x(p))[1¹ f (q·x(p))]

þ e·x(p)f 9(q·x(p))[1¹ 2f (q·x(p))]ÿ

¹ (n ¹ m)
�
f (q·x(p))[1¹ f (q·x(p))]

¹ e·x(p)f 9(q·x(p))[1¹ 2f (q·x(p))]
�
} : ð28Þ

Collecting all common factors gives:

ė¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))x(p)

·{ f (q·x(p))[1¹ f (q·x(p))]m

þ e·x(p)f 9(q·x(p))[1¹ 2f (q·x(p))]n} : (29)

Finally, using Eq. (25) and collecting all common factors,
the expression foṙe reduces to:

ė¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))f (q·x(p))

3 [1¹ f (q·x(p))]x(p)·{m þ e·x(p)[1¹ 2f (q·x(p))]n} : (30)

Eqs. (27) and (30) are the fundamental differential equations
describing the dynamics of the back-propagation system in
terms of the two state variablese andm.

From Eqs. (27) and (30) it follows that the Jacobian
matrix of the system is given by:

J ¼
∑
p

(d(p) ¹ y(p))y(p)(1¹ y(p))f (q·x(p))[1¹ f (q·x(p))]:

3 [1¹ 2f (q ·x(p))]x(p)x(p)Tnx(p)x(p)T0
� �

: (31)

Note that the Jacobian matrix depends on the input vectors,
as well as on the corresponding desired responses for each
one of them. Thus, the nature of the input–output mapping
has a direct effect on the dynamics of the back-propagation
system. This is, of course, an expected result, since the
nature of the learning task determines the shape of the
error surface over the weight space. We can also see that
the Jacobian matrix is real and symmetric and, therefore, all
its eigenvalues are real. In addition, all the corresponding
eigenvectors are linearly independent, and if there are no
eigenvalue multiplicities they will form an orthogonal set.
Since the eigenvalues are real, this means that temporary
minima do not correspond to spiral or centre points of the
phase plane. As a consequence, small perturbations in
the eigenvalues will not affect the stability or instability
of the system. Owing to the exponential nature of the solu-
tions, the followed trajectory will depend on the magnitude
of the largest of these eigenvalues. If this eigenvalue is small
then the trajectory will be in the vicinity of the critical point.
However, if all the eigenvalues are small and do not differ
too much, then small perturbations due to the continuous
update of the weights at each epoch, can cause them even-
tually to bifurcate. Again, the followed trajectory will
depend on the magnitude of the largest positive eigenvalue,
but in this case the magnitude of this eigenvalue will be such
as to allow the trajectory to move far away from the critical
point. Hence, up to the bifurcation point, which does not
appear until a sufficient number of these small perturba-
tions, the solutions will not change much, and the network
will remain in the vicinity of the temporary minimum for a
relatively long time. As soon as this bifurcation occurs then
the network is able to rapidly follow the trajectory with the
large eigenvalue and, therefore, to abandon the minimum.

3. Constrained optimization method

Following the analysis of the previous section, it is evi-
dent that if the maximum eigenvalue of the Jacobian matrix
of the system is relatively large, then the network is able to
escape from the temporary minimum. Hence, instead of
waiting for its growth, the objective of our new approach
is to change each free parameter of the network (i.e. weights
and thresholds) in order to reach a minimum of the cost
function:

E¼
1
2

∑P

p¼ 1
(d(p) ¹ y(p))2, (32)

47N. Ampazis et al. / Neural Networks 12 (1999) 43–58

with respect to the variableswij, while simultaneously max-
imizing a quantityF, representing either an approximation
or a lower bound of the maximum eigenvaluelmax of the
Jacobian matrix, expressed in terms of the network’s free
parameters.

For problems in which it is impossible to obtain an ana-
lytic expression for the maximum eigenvalue in a closed
form, in terms of the weights, a strategy that we found to
give good results is the following: it is well known from
linear algebra that given a real and symmetric matrix
J [RN3N then:

xTJx# lmax xTx ;x [RN: (33)

We have used the simplest choice forx, namely
x¼ ð11…1ÞT, which means that the product on the left-
hand side of Eq. (33) is simply the sum of the elements of
the matrix. Therefore, for the constrained optimization
method we use:

F ¼ xTJx, (34)

thus obtaining an analytic expression by directly evaluating
the sum of the elements ofJ as given by Eq. (31). With this
selection ofF, at each epoch of the learning process, we try
to move the state of the network away from the origin at a
fast rate, thus avoiding the building of redundancy.

Consider the weight vectorW, whose components are all
the network weights and thresholds. We wish to reach a
minimum of the cost function of Eq. (32) with respect to
W, and to simultaneously maximizeF without compromis-
ing the need for a decrease of the cost function. The strategy
which we will adopt for the solution of this problem follows
the methodology for incorporating additional knowledge in
the form of constraints in neural networks learning (Karras
and Perantonis, 1995; Perantonis and Karras, 1995).

At each epoch of the learning process, the weight vector
W will be incremented by dW, so that:

kdWk2 ¼ (dP)2, (35)

wheredP is a constant. Thus, at each epoch, the search for
an optimum new point in the weight space is restricted to a
small hypersphere centred at the point defined by the current
weight vector. IfdP is small enough, the changes toE andF,
induced by changes in the weights, can be approximated by
the first differentials dE and dF. At each epoch, we seek to
achieve the maximum possible change in dF, so that Eq. (35)
is respected, and the change dE in E is equal to a predeter-
mined quantitydQ , 0, i.e.

dE¼ dQ: (36)

This is a constrained optimization problem which can be
solved analytically by introducing two Lagrange multipliers
L1 andL2 to take account of Eqs. (36) and (35), respectively.
We introduce the functionf, whose differential is defined as
follows:

df ¼ dF þ L1(dQ¹ dE) þ L2[(dP)2 ¹ kdWk2]: (37)

On evaluating the differentials involved on the right-hand
side, we readily obtain:

df ¼ F·dW þ L1(dQ¹ G·dW) þ L2[(dP)2 ¹ kdWk2], (38)

whereG andF are given by:

G¼]E=]W, F ¼]F=]W: (39)

To maximize df at each epoch, we demand that:

d2f ¼ F ¹ L1G¹ 2L2dW
ÿ �

·d2W ¼ 0,

d3f ¼ ¹ 2L2kd2Wk2 , 0: ð40Þ

Hence, the factor multiplying d2W in Eq. (40) should van-
ish, and, therefore, we obtain:

dW ¼ ¹
L1

2L2
Gþ

1
2L2

F: (41)

Eq. (41) constitutes the weight update rule for the neural
network, provided thatL1 andL2 can be evaluated in terms
of known quantities. This can be carried out as follows:
from Eqs. (36) and (41) we obtain:

dQ¼
1

2L2
(IGF ¹ L1IGG), (42)

with I GG and I GF given by:

IGG ¼ kGk2, IGF ¼ G·F: (43)

Eq. (42) can be readily solved forL1, giving:

L1 ¼
¹ 2L2dQþ IGF

IGG
: (44)

It remains to evaluateL2. To this end, we substitute Eq. (41)
into Eq. (35) to obtain:

4L2
2(dP)2 ¼ IFF þ L2

1IGG ¹ 2L1IGF, (45)

whereI FF is given by:

IFF ¼ kFk2: (46)

Finally, we substitute Eq. (44) into Eq. (45) and solve forL2,
to obtain:

L2 ¼
1
2

IGG(dP)2 ¹ (dQ)2

IFFIGG ¹ I2
GF

� �¹ 1=2

, (47)

where the positive square root value has been chosen forL2

in order to satisfy the second part of Eq. (40). Note also the
boundldQl # dPÎ(IGG) set on the value ofdQ by Eq. (47).
We always use a valuedQ¼ ¹ ydPÎ(IGG), where y is a
constant between 0 and 1.

Thus, the final weight update rule has only two free para-
meters, namelydP and y. The value chosen for the free
parametery determines the contribution of the constraints
to the weight update rule. A small value ofy means that the
weight update rule tries to satisfy the constraints without
paying too much attention to the minimization of the cost
function, while a large value ofy has the opposite effect. In
our simulations (Section 4.1.3 and Section 4.2), the values

48 N. Ampazis et al. / Neural Networks 12 (1999) 43–58

recorded fordP andy are those giving the best performance.
However, similar performances were recorded with
0:1 , y , 0:5 and 0.3, dP , 1.0, indicating that results
are not very sensitive to the exact values of the parameters.

4. Applications

In this section, we derive analytical and experimental
results from the application of the dynamical systems
analysis of back-propagation, proposed in Section 2, to
specific tasks. Since our analysis is applicable only to net-
works with two hidden nodes and one output node, it is
natural to study relatively small-scale problems which facil-
itate visualization of the main points behind the new
approach. We study two learning tasks, namely the XOR
and the unit square problem. For the XOR problem in par-
ticular, the study presented in the paper introduces new
analytical results about the nature of temporary minima,
which are then supported by the experimental evidence.
We also include an experimental study of the dynamics of
back-propagation (with and without momentum) for the
specific benchmarks, in order to illustrate main conclusions
drawn from the theoretical analysis.

Moreover, we apply the constrained optimization method
proposed in Section 3 to the XOR and unit square problems,
in order to confirm the validity of our method. In our experi-
ments, we show that it is possible to take advantage of the
new dynamical systems approach in order to help a small
network escape from temporary minima. In addition, fol-
lowing common practice used in the literature to benchmark
new learning algorithms, we include a comparison of the
proposed constrained optimization method to back-
propagation and more advanced training methods. How-
ever, the reader should keep in mind that at this stage of
development our method can only be applied to small
networks with two hidden nodes, which is, of course, a
severe restriction. Consequently, generalization of the
method to larger networks is needed before comparisons
concerning large-scale benchmarks of more practical
interest can become possible. An outline of the method
by which this generalization may be achieved is given in
Section 5.

4.1. The XOR problem

4.1.1. Evaluation of the Jacobian matrix
For the XOR problem, the bias augmented input vectors

to the neural network are:

x(1) ¼

¹1

0

0

0BBB@
1CCCA, x(2)

¹1

1

0

0BBB@
1CCCA, x(3) ¼

¹1

0

1

0BBB@
1CCCA,

x(4) ¼

¹1

1

1

0BB@
1CCA, (48)

and the desired responses for each input of the input vectors
ared(1) ¼ 0, d(2) ¼ 1, d(3) ¼ 1 andd(4) ¼ 0. In this case,q is a
three-component vector:q ¼ (q0 q1 q2). We assume that
the network is initialized using weights in a range [¹q,q],
whereq is a small positive number. Initializing the network
with weights of small magnitude, prevents it from approach-
ing certain types of local minima, where some of the
weights assume infinite values. On the other hand, when
weights of small magnitudes are used, the network is
initialized in the vicinity of a temporary minimum, charac-
terized by the equality of outputs corresponding to all train-
ing patterns (Lisboa and Perantonis, 1991).

Using our dynamical systems analysis of Section 2, we
can study the dynamics of the network while it remains in
the vicinity of this stationary point. Until the network finally
escapes, the synaptic weights remain small in magnitude.
Therefore, it is useful to obtain Taylor expansions of quan-
tities involved in the expression for the Jacobian matrix
Eq. (31) in terms of the synaptic weights, and keep only
first-order terms. Evidently, to first order, we can write:

f (q·x(p)) ¼
1
2
þ

1
4
q·x(p) (49)

y(p) ¼ f (wh·yh(p)) ¼
1
2

þ
1
4
wh·yh(p) ¼

1
2

þ
1
8
(wh

1 þ wh
2 ¹ 2wh

0),

(50)

wherewh is the weight vector of the output neuron andyh is
the input vector to the output neuron (the bias-augmented
vector with elements of the outputsyh(p)

i of the hidden
neurons).

Substituting Eqs. (50) and (49) into Eq. (31) and
keeping only first-order terms for each element of the
Jacobian, we arrive, after some algebra, at the following
expression:

J ¼

0 b a ¹ 2Z

b ¹ b g¹ a ¹ b Z

a g¹ a ¹ b ¹ a Z

¹ 2Z Z Z 0

0BBBBB@

1CCCCCA, (51)

where

a ¼ ¹
1
64

q1n,b¼ ¹
1
64

q2n,g ¼ ¹
1
64

q0n,

Z ¼ ¹
1
64

(wh
1 þ wh

2 ¹ 2wh
0): ð52Þ

4.1.2. Evaluation of the Jacobian matrix eigenvalues
The eigenvalues ofJ can be determined from Eq. (9). The

49N. Ampazis et al. / Neural Networks 12 (1999) 43–58

evaluation of the determinant yields the equation:

l4 þ k1l
3 þ k2l

2 þ k3l þ k4 ¼ 0, (53)

where

k1 ¼a þ b, k2 ¼ 2agþ 2bg¹ ab¹ 2a2 ¹ 2b2 ¹ g2 ¹ 6Z2,
(54)

k3 ¼ (a þb ¹ 2g)(ab þ Z2), k4 ¼ (a þ b¹ 2g)2Z2:

The left-hand side of Eq. (54) is the characteristic poly-
nomial of the system and its solution gives the eigenvalues
of the Jacobian matrix at each iteration of the back- propagation
algorithm. We shall show that the Jacobian matrix has two
positive and two negative eigenvalues. Using Vieta’s relations
for the rootsl i of Eq. (53), we can write

k2 ¼
1
2

∑
iÞj

lilj , k4 ¼
∏

i
li : (55)

From Eq. (54) and from the fact that the Jacobian matrix
should be non-singular, it follows thatk4 . 0. Therefore, the
Jacobian matrix may have zero, two, or four positive eigen-
values. However,k2 can be written as a quadratic form in
terms ofa,b,g andZ:

k2 ¼ [a b g Z] A

a

b

g

Z

26666664

37777775

¼ [a b g Z]

¹2 ¹0:5 1 0

¹0:5 ¹2 1 0

1 1 ¹1 0

0 0 0 ¹6

26666664

37777775

a

b

g

Z

26666664

37777775: ð56Þ

The matrixA is negative definite, since all its eigenvalues
are negative and therefore,k2 , 0. If follows from the first
part of Eq. (55) that the Jacobian matrix can only have two
positive and two negative eigenvalues. As a result, the
critical point is a saddle point, so that the system will even-
tually be able to escape from it. This result is in agreement
with the findings of Sprinkhuizen-Kuyper and Boers (1996)
who have proved that all stationary points of the XOR
problem with finite weights are, in fact, saddle points.

We now wish to obtain a formula for the eigenvalues in
closed form in terms of the weights. To this end, we make
two further approximations.

The first approximation involves ignoring all dependence
on Z in the above equations. To see why this is reasonable,
let us consider how the value ofZ is altered using the back-
propagation rule in the early stages of learning. Using Eq. (2)
we can evaluate the quantity:

Ż ¼ ¹
1
64

(ẇh
1 þ ẇh

2 ¹ 2ẇh
0):

Again, keeping only first-order terms in the weights, we find
that Ż ¼ ¹1=4(Z). It follows that Z tends to 0 at an expo-
nential rate in the initial stages of learning. Moreover, we
notice from Eqs. (2) and (3) that the weight update rule for
the input–hidden layer weights involves factors of the form:

y(p)(1¹ y(p))wh
i <

1
4
wh

i ,

that are not present in the weight update rule for the hidden–
output layer weights. As a result, sincewh

i are small, the
input–hidden layer weights are updated at a much slower
rate than the hidden–output layer weights, and do not
change much at the beginning of training. As the hidden–
output layer weights move faster,Z moves quickly towards
0, and becomes much smaller than any of the input–hidden
layer weights just a few epochs after initialization of train-
ing. With this approximation in mind, we obtain a small
‘factored’ eigenvalue and three eigenvalues which can be
found by solving the cubic equation:

l3 þ K1l
2 þ K2l þ K3 ¼ 0, (57)

where

K1 ¼ a þ b, K2 ¼ 2ag þ 2bg¹ ab ¹ 2a2 ¹ 2b2 ¹ g2,

K3 ¼ ab(a þ b¹ 2g): ð58Þ

The second approximation involves ignoring the termK3 in
Eq. (57) and, thus, reducing the problem of finding the
dominant eigenvalue to the solution of a quadratic equation.
To see why this approximation is reasonable, let us examine
the condition under which a rootlc of Eq. (57) can be
approximated by a rootlq of the quadratic equation:

l2 þ K1lþ K2 ¼ 0: (59)

For the approximation to be valid, the quantitys¼ lc ¹ lq

must be small in magnitude compared withlq, i.e. ls/lql p
1. Substitutinglc ¼ lq þ s for l into Eq. (57), keeping
terms linear ins, and solving fors, we obtain:

s¼
¹ K3

3l2
q þ 2K1lq þ K2

: (60)

Finally, using the fact thatlq is a solution of the quadratic
Eq. (59), we obtain:

ls=lql¼
K3

K1l
2
q þ 2K2lq

, lq ¼
1
2
(¹K1 6

�������������������
K2

1 ¹ 4K2

q
):

(61)

Taking into account Eqs. (52) and (58), we conclude that the
right-hand side of Eq. (61) is effectively a function ofq and
n. Assuming uniform distributions in [¹q,q] for these vari-
ables, it is easy to see from Eq. (61) that the distribution of
ls/lql is independent ofq. We have performed a Monte
Carlo calculation in order to evaluate the distribution of
ls/lql, the result is shown in Fig. 2. It is evident that the
distribution is strongly biased towards small values ofls/lql.
Indeed, the mean of the distribution was found to be 0.1,

50 N. Ampazis et al. / Neural Networks 12 (1999) 43–58

with 97% of the samples less or equal to 0.3. Hence, for 97%
of different random weight initializations,ls/lql is indeed
small compared with 1.

As a result of the above approximations, it is safe to
assume that two eigenvalues of the Jacobian are given by
the solutions of the quadratic Eq. (59):

lq(1,2)

¼
¹ (a þ b) 6

��
9a2 þ 9b2 þ 4g2 þ 6ab¹ 8ag ¹ 8bg

p
2

,

(62)

with the two other ‘factored’ eigenvalues much smaller in
magnitude.

It is easy to see that the quadratic form:

Q1 ¼ 9a2 þ 9b2 þ 4g2 þ 6ab ¹ 8ag ¹ 8bg, (63)

is positive definite, sinceQ1 can be written as:

Q1 ¼ [a b g] B

a

b

g

2664
3775¼ [a b g]

9 3 ¹4

3 9 ¹4

¹4 ¹4 4

2664
3775

a

b

g

2664
3775,

(64)

and all the eigenvalues ofB are positive. Therefore, the
eigenvalues of the back-propagation system remain real
after the approximations leading to Eq. (62) have been
made. Similarly, the quadratic form

Q2 ¼ 9a2 þ 9b2 þ 4g2 þ 6ab ¹ 8ag ¹ 8bg¹ (a þ b)2,
(65)

is also positive definite, sinceQ2 can be written as:

Q2 ¼ [a b g] C

a

b

g

2664
3775¼ [a b g]

8 2 ¹4

2 8 ¹4

¹4 ¹4 4

2664
3775

a

b

g

2664
3775,

(66)

and the matrixC has only positive eigenvalues. Conse-
quently, our approximations have revealed the existence
of one positive and one negative eigenvalue, and this
means that the classification of the critical point as a saddle
point has been preserved. Owing to the exponential nature
of the solutions, the time spent by the system in the vicinity
of the origin, is determined by the magnitude of the eigen-
values and, in particular, by the magnitude of the positive
eigenvalue. Since the other two eigenvalues are much smal-
ler in magnitude, the trajectory followed by the system in
the (e,m) space is approximately parallel to the plane
spanned by the eigenvectors corresponding tolq1 andlq2.
Moreover, the trajectory will asymptotically approach the
axis corresponding to the eigenvector of the largest eigen-
value. Finally, Eq. (62) gives the eigenvalues in closed form
in terms of the synaptic weights, and can be used directly in
the constrained learning algorithm of Section 3 in order to
accelerate learning.

4.1.3. Simulation results
In our simulations, we studied the dynamics of the net-

work shown in Fig. 1, trained to solve the XOR problem
using back-propagation (BP) and back-propagation with
momentum (BPM). In addition, we report performance
results for the proposed constrained optimization method

Fig. 2. Frequency histogram for the variablels/lql.

51N. Ampazis et al. / Neural Networks 12 (1999) 43–58

and the following learning algorithms: QuickProp (QPROP)
(Fahlman, 1988), Delta-Bar-Delta (DBD) (Jacobs, 1988),
Resilient Propagation (RPROP) (Riedmiller and Braun,
1993) and ALECO-2 (Perantonis and Karras, 1995). In all
cases, we performed 1000 trials with various initializations
of the weights in the range¹0.2–0.2. The maximum num-
ber of epochs per trial was set to 1000 and learning was
considered successful when the ‘40–20–40’ criterion of
Fahlman (1988) was met. Learning parameters chosen to
ensure the best possible performance are shown in Table 1.

The dynamics of the network trained using BP in a repre-
sentative trial is shown in Fig. 3. Fig. 3A shows the plot of
the MSE versus epoch, while Fig. 3B and C show the plot of
the corresponding eigenvalues (calculated from Eq. (62))
versus epoch. Fig. 3D and E show the plot of the maximum
and minimum eigenvalues versus epoch, respectively,
which are calculated directly from Eq. (31) using a numer-
ical method, namely Householder’s method for the diag-
onalization of matrices. From Fig. 3A, the temporary
minimum can be characteristically recognized as the part
of the MSE that is approximately flat. In addition to
Fig. 3B and C, it is clear that as long as the network remains
in the vicinity of the temporary minimum, the two eigen-
values are very small. In particular, the small magnitude of

the positive eigenvalue corresponding to the positive sign in
Eq. (62) shown in Fig. 3B, reveals that the network is unable
to move away fast from the critical point. However, as
learning continues, perturbations are applied to the coeffi-
cients of the system at each epoch, which eventually cause
the bifurcation of the two eigenvalues. This bifurcation is
clearly seen in Fig. 3B and C, and corresponds to the part of
Fig. 3A where the network abandons the flat part of the MSE
curve. Finally, a comparison of Fig. 3D and E with Fig. 3C
and D, respectively, reveals that the differences are indeed
very small and therefore the approximation of the eigen-
values with Eq. (62) is valid.

Since the other two eigenvalues (of the 43 4 Jacobian
matrix) are much smaller in magnitude, the trajectory
followed by the system in the (e,m) space is approximately
parallel to the plane spanned by the two eigenvectors,y1 and
y2, corresponding tolq1 andlq2. The dotted line in Fig. 4
shows the projection of the trajectory of the system on this
plane. Owing to the exponential nature of the solutions, the
trajectory in the phase plane with increasing time is deter-
mined by the value of the positive eigenvalue and, therefore,
as time progresses, the system moves away from the origin
asymptotically parallel to they1 axis. At a certain epoch of
the training phase where the coordinates on this plane are

Table 1
Experimental results for the XOR problem

Algorithms Proposed BP BPM QPROP DBD RPROP ALECO-2

Parameters dP ¼ 0.5 h ¼ 6.5 h ¼ 6.5 h ¼ 2.0 h ¼ 7.0 hþ ¼ 1:5 dP ¼ 0.6
y ¼ 0.2 a ¼ 0.9 m ¼ 1.2 f ¼ 0.12 h¹ ¼ 0:8 y ¼ 0.9
h ¼ 3.0 q ¼ ¹10¹ 4 v ¼ 0.70 Dmax¼ 1:0
a ¼ 0.8 a ¼ 0.0 k ¼ 0.25 Dmin ¼ 10¹ 66

T0 ¼ 0:2 a ¼ 0.8 D0 ¼ 0:1
No. of epochs 45 163 112 74 89 35 38
Successes (%) 99.1 95.9 91.7 70.2 90.8 74.0 77.0

Fig. 3. Plots versus epoch for the XOR problem without momentum: (A) plot of the MSE; (B) plot oflq1; (C) plot oflq2; (D) plot of lmax; and (E) plot oflmin.

52 N. Ampazis et al. / Neural Networks 12 (1999) 43–58

y1,0 andy2,0, the trajectory can be estimated instantaneously
by the parametric equationsy1 ¼ y1,0 exp(lq1t) and y2 ¼

y2,0exp(lq2t), wherelq1 andlq2 are the eigenvalues at the
current epoch. The solid lines in Fig. 4 represent these esti-
mates at five different points of the actual trajectory. Note
that the actual and estimated trajectory are in very good
agreement. At the earlier stages of learning,lq1 is small
and the system makes little progress along they1 axis.
This is reflected in the small magnitude of they1 axis pro-
jections of the estimated trajectoriesT1–T3. However, as
learning progresses and the eigenvalues bifurcate (T4), the
system moves rapidly away from the origin as reflected in
trajectoryT5.

The dynamics of the network trained using BPM is illus-
trated in Fig. 5. Fig. 5A shows a plot of the MSE versus
epoch for BPM, while Fig. 5B and C show the plot of the
corresponding eigenvalues (again calculated from Eq. (62))
versus epoch. From these figures it is clear that even with the
addition of momentum the dynamics of the network does
not alter significantly. This is an expected result, since the
only benefit of the inclusion of the momentum term is the
slight decrease in the time spent at the temporary minimum,
because of the effective increase of the learning rate
achieved with momentum in flat plateaus. This, in turn,
causes larger perturbations in the eigenvalues and hence,
the bifurcation occurs earlier. This bifurcation of the eigen-
values can be clearly seen in Fig. 5B and C, and indicates
the more rapid abandonment of the temporary minimum.

Next, we consider the application of the constrained opti-
mization method introduced in Section 3. In this case, at
each epoch we tried to maximize the quantityF ¼ lq1

with lq1 given by Eq. (62). Clearly,F is given by an analytic
expression which is a differentiable function of the weights

and, therefore, all the derivatives required by the algorithm
can be obtained. The constrained optimization algorithm
was applied only when each component ofe was below a
certain thresholdT0, indicating that the network was trapped
at the temporary minimum. As soon as the threshold was
exceeded, the training algorithm was switched to BPM.
Values for all related parameters are shown in Table 1.
The small number of required epochs for the solution of
the problem, indicates a considerable improvement in the
learning behaviour of the network with the proposed algo-
rithm. In addition, since this significant improvement in the
behaviour of the system was achieved by maximizinglq1 as
given by Eq. (62), the approximations made for the eigen-
values discussed in the previous subsection are once again
justified. Fig. 6 shows a representative behaviour of the
dynamics of the network with this learning scheme.
Fig. 6A shows the MSE curve versus epoch, and Fig. 6B
and C show the corresponding values of the eigenvalues
versus epoch as given by Eq. (62). From the MSE curve
we can see that the learning behaviour of the system is
altered considerably, since the flat part of the curve is sig-
nificantly reduced. Fig. 6B shows the maximization of the
largest eigenvalue achieved with the proposed algorithm,
which guarantees the fast evolution of the dynamics of the
system towards a solution of the problem.

The comparative performance results summarized in
Table 1 (percentage of successful trials and mean number
of epochs in successful trials) show that the proposed
method does not only exhibit a much lower mean number
of epochs than BP, but is also among the faster of the algo-
rithms studied. Moreover, it has the additional advantage
that it can overcome the presence of temporary minima in
almost all trials, and, therefore, is the only method that

Fig. 4. Actual and predicted trajectories of the back-propagationsystem at the vicinity of the temporary minimum.

53N. Ampazis et al. / Neural Networks 12 (1999) 43–58

exhibits almost 100% success in converging to the desired
global minimum.

4.2. The unit square problem

The objective of this training task is to distinguish
between the two classes in the two-dimensional space
shown in Fig. 7. Thirty samples of each class, picked at
random, were used for the training of the network. It should
be clear that for this particular problem it is practically

impossible to obtain an analytical expression for the eigen-
values of the Jacobian matrix. Therefore, we can use Eq. (33)
in order to apply the constrained optimization method.

As in the XOR problem, we studied the dynamics of the
2-2-1 network using back-propagation (BP) and back-
propagation with momentum (BPM). We also report perfor-
mance results for the proposed optimization method and the
other algorithms mentioned in Section 4.1.3 with the same
trial statistics, initialization and stopping criteria. Learning
parameters for all algorithms are shown in Table 2.

Fig. 5. Plots versus epoch for the XOR problem with momentum: (A) plot of the MSE; (B) plot oflq1; and (C) plot oflq2.

Fig. 6. Plots versus epoch for the XOR problem with constrained optimization: (A) plot of the MSE; (B) plot oflq1; and (C) plot oflq2.

54 N. Ampazis et al. / Neural Networks 12 (1999) 43–58

Fig. 8 shows a representative behaviour of the dynamics
of the network trained using BP. Fig. 8A shows the plot of
the MSE versus epoch, while Fig. 8B and C show the plot of
the corresponding eigenvalues (calculated directly from
Eq. (31)) versus epoch. From the MSE curve we can see
that after an initial error reduction corresponding to the first
200 iterations, the network encounters a temporary mini-
mum, from which it seems unable to escape for a relatively
long time. However, after a sufficient number of iterations,
we can observe the sudden drop of the MSE curve which
indicates the abandonment of the temporary minimum. The
initial error reduction phase corresponds to the situation
whereby the two hidden weight vectors move towards
their common attractor hyperplane. When they coincide
completely with it, the network enters the phase where it
sticks to the temporary minimum. This coincidence of the
hyperplanes is clearly seen in Fig. 7. Fig. 8B shows the
small magnitude of the maximum eigenvalue in the vicinity
of the temporary minimum, and its eventual increase that
allows the network to escape. At this point it is interesting to
make the following remark: suppose that we make the two
classes linearly separable (by increasing the area of the
white region in Fig. 7), then, when the weight vectors of
the two hidden units coincide with their common attractor,
the network solves the problem and thus, no temporary
minimum is encountered. This is because the common
attractor is the line that separates the two different classes
and thus, no further learning is required. In this case, the
MSE curve will fall almost linearly to zero level.

The dynamics of the network trained using BPM is illus-
trated in Fig. 9. Fig. 9A shows the plot of the MSE versus
epoch, while Fig. 9B and C show the plot of the correspond-
ing maximum and minimum eigenvalues, respectively, ver-
sus epoch. From these Fig. 9 we can again see that even with
the addition of momentum, the dynamics of the network
remains almost the same, the only difference being the
slight decrease in the time spent at the temporary minimum
due to the effect of momentum.

Next, we consider the application of the constrained opti-
mization method introduced in Section 3. The large reduc-
tion in the required number of epochs for the solution of the
problem, and the dramatic increase in the number of suc-
cessful trials, once again indicate the considerable improve-
ment in the learning behaviour of the network with the
proposed method. Fig. 10 shows a representative behaviour
of the dynamics of the network with this learning scheme.
Fig. 10A shows the MSE curve versus epoch, and Fig. 10B
and C show the corresponding values of the maximum and
minimum eigenvalues, respectively, versus epoch. From the
MSE curve, we can see the network is able to solve the
problem in a very small number of epochs compared with
the cases of BP or BPM. Fig. 10B shows the maximization
of the largest eigenvalue achieved with the constrained opti-
mization algorithm, which verifies the validity of the
approximation made forF, whose maximization ensures
the fast evolution of the dynamics of the system away
from any temporary minima.

The comparative performance results summarized in
Table 2, show that for the unit square problem the proposed
constrained optimization method is among the faster of the
algorithms studied. Once again, the method is not affected
by the presence of temporary minima, and, therefore,
exhibits the highest success rate among all algorithms.

5. Conclusions

The dynamical systems theory has been used for the
mathematical analysis of the dynamics of a two-layer,
feed-forward network trained according to the back-
propagation algorithm. The utility of this novel analysis
has been demonstrated by describing and explaining the
occurrence of temporary minima. A greater understanding
of the fundamental mechanisms behind this type of minima

Fig. 7. The two classes of the unit square problem and the hyperplanes of
the two hidden nodes at the temporary minimum.

Table 2
Experimental results for the unit square problem

Algorithms Proposed BP BPM QPROP DBD RPROP ALECO-2

Parameters dP ¼ 0.7 h ¼ 1.2 h ¼ 0.6 h ¼ 1.0 h ¼ 0.4 hþ ¼ 1:4 dP ¼ 2.0
y ¼ 0.2 a ¼ 0.9 m ¼ 1.4 f ¼ 0.12 h¹ ¼ 0:8 y ¼ 0.5
h ¼ 0.5 q¼ ¹10¹ 4 v ¼ 0.70 Dmax¼ 1:0
a ¼ 0.8 a ¼ 0.0 k ¼ 0.25 Dmin ¼ 10¹ 6

T0 ¼ 0:8 a ¼ 0.8 D0 ¼ 0:1
No. of epochs 40 257 196 40 79 79 34
Successes (%) 99.9 73.5 86.1 82.4 85.0 80.0 87.0

55N. Ampazis et al. / Neural Networks 12 (1999) 43–58

is important, because it usually takes a long time for the
network to eventually escape from them, and hence, training
is significantly impaired. To alleviate this problem, we
introduced a constrained optimization method that achieves
simultaneous minimization of the cost function, and max-
imization of the largest eigenvalue of the Jacobian matrix of
the dynamical system model, so that the network avoids
getting trapped at a temporary minimum and hence, total
training time is significantly decreased.

There are several research issues pertaining to this novel
approach to the dynamics of back-propagation networks.

The important problem of extending the analysis to net-
works with an arbitrary numberM of hidden units each
connected toN inputs, is currently under investigation.
For this generalization, motivated by the redundancy as an
inherent property of multilayer networks, appropriate state
variables that map the temporary minimum to the origin of
the phase plane, are expected to be the differences of each
hidden weight vector from the average of all the hidden
weight vectors, and the differences of each output weight
component from the average of all the output weight com-
ponents. This gives a set of independent quantities that

Fig. 8. Plots versus epoch for the unit square problem without momentum: (A) plot of the MSE; (B) plot oflmax; and (C) plot oflmin.

Fig. 9. Plots versus epoch for the unit square problem with momentum: (A) plot of the MSE; (B) plot oflmax; and (C) plot oflmin.

56 N. Ampazis et al. / Neural Networks 12 (1999) 43–58

extend the 2-hidden node case studied in this paper. For a
given task, the initial bifurcation will involve the splitting of
the difference sets into two clusters. The membership of
those clusters will determine which further clusters can
then be constructed by later bifurcations. Therefore, the
resulting Jacobian matrix of such a general network can
be analytically evaluated in the vicinity of the temporary
minimum that appears after each bifurcation. The con-
strained optimization method is, of course, independent of
the number of hidden nodes, and can be applied using lower
bounds to the maximum eigenvalue of the Jacobian matrix.
It would be interesting to investigate whether this approach
can facilitate learning in large scale problems. It is our belief
that the answers to these questions can provide a valuable
insight into many aspects of learning, help develop new
efficient tools for a much needed mathematical/analytical
approach to the study of feed-forward networks, and lead
to more efficient methods of minimizing the time spent in
temporary minima.

References

Biehl, M., & Schwarze, H. (1995). Learning by on-line gradient descent.
Journal of Physics, A28, 643–656.

Boyce, W.E., & DiPrima, R.C. (1986).Elementary differential equations
and boundary value problems. New York: Wiley.

Coddington, E.A., & Levinson, N. (1955).Theory of ordinary differential
equations. New York: McGraw-Hill.

Fahlman, S.E. (1988). Faster learning variations on back-propagation: an
empirical study. In D. Touretzky, G. Hinton & T. Sejnowski (Eds.),
Proceedings of the Connectionist Models Summer School(pp. 38–51).
San Mateo, CA: Morgan Kaufmann.

Gelb, A., & Vander Velde, W.E. (1968).Multiple-input describing func-
tions and nonlinear system design. New York: McGraw-Hill.

Gorse, D., Shepherd, A., & Taylor, J.G. (1993). Avoiding local minima
using a range expansion algorithm.Neural Network World, 5, 503–510.

Gorse, D., Shepherd, A., & Taylor, J.G. (1997). The new ERA in supervised
learning.Neural Networks, 10, 343–352.

Graham, D., & McRuer, D. (1961).Analysis of nonlinear control systems.
New York: Wiley.

Guo, H., & Gelfand, S.B. (1991). Analysis of gradient descent learning
algorithms for multilayer feedforward neural networks.IEEE Transac-
tions on Circuits and Systems, 38, 883–894.

Jacobs, R.A. (1988). Increased rates of convergence through learning rate
adaptation.Neural Networks, 1, 295–307.

Karras, D.A., & Perantonis, S.J. (1995). An efficient constrained training
algorithm for feedforward networks.IEEE Transactions on Neural Net-
works, 6, 1420–1434.

Lee, Y., Oh, S., & Kim, M. (1991). The effect of initial weights on
premature saturation in back-propagation learning. InProceedings of
International Joint Conference on Neural Networks(Vol. 1, pp. 765–
770) Seattle, WA.

Liang, P. (1991). Design artificial neural networks based on the principle of
divide-and-conquer. InProceedings of International Conference on
Circuits and Systems(pp. 1319–1322).

Lisboa, P.J.G., & Perantonis, S.J. (1991). Complete solution of the local
minima in the XOR problem.Network, 2, 119–124.

Minsky, M.L., & Papert, S.A. (1988).Perceptrons, expanded ed. Cam-
bridge, MA: MIT Press.

Murray, A.F. (1991). Analog VLSI and multi-layer perceptrons —
accuracy, noise and on-chip learning. InProceedings of Second
International Conference on Microelectronics for Neural Networks
(pp. 27–34).

Parker, D.B. (1985). Learning-logic: casting the cortex of the human brain
in silicon. (Tech. Rep. TR-47). Center for Computational Research in
Economics and Management Science, Massachussets Institute of
Technology.

Perantonis, S.J., & Karras, D.A. (1995). An efficient constrained
learning algorithm with momentum acceleration.Neural Networks, 8,
237–249.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster
backpropagation learning: the RPROP algorithm. InProceedings of the
International Conference on Neural Networks(Vol.1, pp. 586–591).
San Francisco, CA.

Fig. 10. Plots versus epoch for the unit square problem with constrained optimization: (A) plot of the MSE; (B) plot oflmax; and (C) plot oflmin.

57N. Ampazis et al. / Neural Networks 12 (1999) 43–58

Saad, D., & Solla, S.A. (1995a). On-line learning in soft-committee
machines.Physical Review, E52, 4225–4243.

Saad, D., & Solla, S.A. (1995b). Exact solution for on-line learning in
multilayer neural networks.Physical Review Letters, 74, 4337–4340.

Sontag, E.D., & Sussmann, H.J. (1991). Backpropagation separates where
perceptrons do.Neural Networks, 4, 243–249.

Sprinkhuizen-Kuyper, I.G., & Boers, E.J.W. (1996). The error surface of

the simplest XOR network has only global minima.Neural Computa-
tion, 8, 1301–1320.

Sussmann, H.J. (1992). Uniqueness of the weights for minimal feedforward
nets with a given input–output map.Neural Networks, 5, 589–593.

Woods, D. (1988). Back and counter propagation aberrations. InProceed-
ings of International Joint Conference on Neural Networks(Vol. 1,
pp. 343–353).

58 N. Ampazis et al. / Neural Networks 12 (1999) 43–58

