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Abstract

This paper provides a unifying view of three discriminant linear feature extraction methods: linear discriminant analysis,
heteroscedastic discriminant analysis and maximization of mutual information. We propose a model-independent reformulation
of the criteria related to these three methods that stresses their similarities and elucidates their di0erences. Based on assumptions
for the probability distribution of the classi2cation data, we obtain su3cient conditions under which two or more of the
above criteria coincide. It is shown that these conditions also su3ce for Bayes optimality of the criteria. Our approach
results in an information-theoretic derivation of linear discriminant analysis and heteroscedastic discriminant analysis. Finally,
regarding linear discriminant analysis, we discuss its relation to multidimensional independent component analysis and derive
suboptimality bounds based on information theory.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Discriminant linear feature extraction (DLFE) is the task
of reducing the dimension of the observation space by 2nd-
ing a suitable linear subspace in which the class separabil-
ity is optimally maintained. DLFE is mainly used for two
purposes: for data visualization, in which case the target
subspace is usually of very small dimension (2 or 3), or
as a preprocessing step in a pattern recognition system [1],
since a reduced feature space dimension may lead to bet-
ter classi2er training with improved generalization ability.
The importance and bene2ts of DLFE in a pattern recog-
nition system have been emphasized even when combined
with very competent classi2er models, such as support vec-
tor machines [2].
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In this paper we focus on three di0erent methods for
DLFE: the statistical linear discriminant analysis criterion
(LDA), the heteroscedastic discriminant analysis crite-
rion (HDA) and the information-theoretic maximization
of mutual information criterion (MMI). LDA has a long
tradition in statistics and pattern recognition 1 having been
used in many application 2elds, such as face recognition
[3,4], or document classi2cation [5]. Several extensions and
variations of the basic LDA algorithm have been developed
concerning either implementation and robustness issues
[6–8] or deviations from the model assumptions [9,10].
HDA [11] is a more recent approach derived by applying
the maximum likelihood principle in an heteroscedas-
tic model and has been successfully applied to speech
recognition [11].

1 Its popularity accounts also for its numerous viewpoints and
names, such as multiple discriminant analysis, generalized Fisher
criterion or canonical variate analysis.
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The MMI principle has also been known for long as a
natural criterion for evaluating the separability quality of
features [12,13]. Due to its computational complexity [14]
it has mostly been used in an approximate way for individ-
ual feature selection [15,16]. However, its main advantage
of making no assumptions about the underlying probability
model of data has motivated the development of successful
linear feature extraction algorithms [17,18].

Each of the above three DLFE criteria has been originally
derived by a di0erent rationale. Moreover, their mathemati-
cal expressions di0er in form, so that a comparison of these
criteria is generally di3cult. It must also be stressed that,
although conditions that ensure the Bayes optimality of the
LDA criterion are known, the same is not true for the other
two criteria.

The purpose of this paper is to provide a uni2ed view of
these DLFE criteria by

• emphasizing their similarity through expressing them in
a common framework and with mathematical forms that
resemble each other

• investigating conditions under which these criteria re-
cover subspaces that are Bayes optimal, in the sense that
the minimum possible Bayes error is obtained, and hence
optimal classi2cation accuracy is ensured

• proposing conditions on the underlying probabilities of
the observation data model under which two or more of
the above criteria coincide, in the sense that they recover
identical subspaces of the original observation space.

The 2rst objective is met by proposing new model-indepen-
dent mathematical forms for the three criteria that stress
their similarities and elucidate their di0erences. To meet the
second and third objectives, we state the DLFE problem
as a source recovering problem. We introduce the follow-
ing hierarchy of models on the observation space variables:
the homoscedastic gaussian model (HOG) [19, p. 59], Ku-
mar and Andreou’s heteroscedastic model (KAH) [11] and
a more general model which we call zero information loss
model (ZIL). It is shown that each of these models is a spe-
cial case of the next one in the hierarchy. It is also demon-
strated that under the ZIL model the MMI criterion is Bayes
optimal. Moreover, our analysis shows that under the KAH
model the MMI criterion coincides with the HDA criterion
and both criteria reach Bayes optimal solutions. Also, un-
der the more restricted HOG model all three criteria co-
incide and are Bayes optimal. These results allow for an
information-theoretic derivation of the LDA criterion. Fi-
nally, our discussion allows for an alternative interpretation
of LDA as a special case of multidimensional independent
component analysis [20] and for the derivation of subopti-
mality bounds for the LDA criterion based on information
theory.

The rest of this paper is organized as follows: In Sec-
tion 2, the LDA, HDA and MMI criteria are described and
their derivations are brieLy explained. In Section 3, the ZIL

model is proposed and Bayes optimality of the MMI crite-
rion under the ZIL model is proved. In Section 4, a uni2ed
model-independent view of the three DLFE criteria is pre-
sented by expressing them in forms that enable a straight
comparison. In Section 5, a deeper investigation of the rela-
tion among the three criteria is carried out and equivalence
as well as Bayes optimality in the framework of the HOG
and KAH models is established. An information theoretic
derivation of HDA and LDA is also proposed. In Section
6, a number of two-dimensional classi2cation problems are
given that illustrate the main results of the paper. Finally,
in Section 7, the connection with multidimensional inde-
pendent component analysis is established, suboptimality
bounds of LDA are discussed and future work is outlined.

2. Foundations of LDA, HDA and MMI

2.1. The DLFE problem

Consider the classi2cation problem which is concerned
with 2nding an optimal rule for the assignment of a given ob-
servation, assumed to be an n-dimensional vector x∈X ⊆
Rn, to one ofK known classes!k among the setC={!k; k=
1 : : : K}.

From a probabilistic point of view, the above classi2cation
problem is solved in an optimal way by using the Bayes
classi�cation rule to determine the optimal class choice for
a given observation. Let the observation vector and the class
be the jointly distributed random variables X and � taking
values from the setsX andC and having a-priori distribution
functions p(x) and p(!k) respectively. 2 The conditional
probability of the class given the observation vector x will
be denoted, as usual, by p(!k |x). The optimal class choice
for a given observation, called Bayes classi�cation rule, is
made by selecting the class with maximum probability given
the observation. The Bayes error, de2ned as the expected
classi2cation error resulting from assigning classes to the
observations according to the Bayes classi2cation rule, is
given by

Pe(�|X) = 1− EX

[
max
!k

p(!k |x)
]
; (1)

where EX denotes expectation value with respect to X.
Consider now the DLFE problem. The task is to solve

the classi2cation problem using only an m-dimensional sub-
space of Rn, where m is a given positive integer with m¡n.
Hence, it is sought to 2nd a linear transformation of the
observation vector, e0ected by a full rank matrix A of di-
mension n× m, such that optimal classi2cation accuracy is
obtained using only the reduced dimensionality vector A�x.

To each choice of A there corresponds a certain Bayes
error Pe(�|A�X). The DLFE problem is now naturally

2 By convention, capital letters will denote random variables and
lowercase letters will denote particular values that random variables
can take on.
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de2ned as 2nding the set ÂBayes of matrices that yield the
minimum Bayes error Pe(�|A�X):

ÂBayes = argmin
A

Pe(�|A�X): (2)

Any matrix that yields minimum Bayes error in Eq. (2) will
be called Bayes optimal matrix.

It should be stressed that Bayes optimality is related to
the subspace of Rn induced by matrix A rather than to the
exact matrix [21, p. 441]. This means that any transformed
vector of the form T (A�X), where T is a non-singularm×m
matrix, gives the same Bayes error.

In practice, 2nding the Bayes optimal matrix by direct op-
timization of Eq. (2) can be very hard. As a common alter-
native, one may choose to 2nd a matrix that maximizes other
feature extraction criteria that have been proposed in the
literature whose evaluation may be less demanding. How-
ever, the success of these criteria is still measured by their
ability to extract subspaces with classi2cation error close to
the Bayes error. In the remainder of this section we review
the LDA, HDA and MMI criteria, each one derived using a
di0erent path.

2.2. The LDA criterion

The LDA criterion has been proposed as a class separatory
measure. The basic idea behind its derivation is to extract a
subspace in which the classes means are far from each other,
whereas the within class covariance matrices (i.e. class con-
ditional covariance matrices) are small. To formulate the
criterion, consider the overall mean � and class conditional
means �k of X de2ned by

�k = EX|!k [x]; (3)

� = EX[x] (4)

and second order statistics, namely the class conditional co-
variance matrices �k and their average O� as well as the
overall class covariance matrix �, de2ned by

�k = EX|!k [(x− �k)(x− �k)�]; (5)

O�= E�[�k ]; (6)

�= EX[(x− �)(x− �)�]: (7)

Given a positive integer m¡n, the LDA criterion requires
to 2nd among all possible n × m full rank matrices the set
ÂLDA of matrices de2ned by [21, p. 446]: 3

ÂLDA = argmax
A

log
|A��A|
|A� O�A| : (8)

3 The criterion involves actually the sample estimates of means,
covariance matrices and class probabilities. Here, we do not con-
sider sample estimation issues, and consider instead the asymptotic
limit of big sample size, assuming that the sample estimates of
means and covariance matrices converge to the true means and co-
variance matrices. This assumption will be made also in Section
2.3, when we examine the HDA criterion.

Any matrix that yields the maximum in Eq. (8) will be called
LDA optimal matrix. 4

The above optimum can be found by solving a general-
ized eigenvalue problem. Namely, the matrix formed by the
m eigenvectors of O�−1� with greater eigenvalues is LDA
optimal (see Ref. [21, p. 449]).

In general, the LDA optimal matrix is not Bayes optimal.
However, we can guarantee the Bayes optimality of LDA
under some conditions. First, let us de2ne the homoscedastic
gaussian model.

De�nition 1 (HOG model). Let X and � be random vari-
ables taking values at X ⊆ Rn and C={!k}K1 respectively.
We say that X and � assume the homoscedastic gaussian
model (HOG) if

X|� = !k ∼ N(�k ; O�) ∀k ∈{1; : : : ; K}

i.e. the probability distribution function (PDF) of X given
!k follows the gaussian distribution, with distinct means but
the same covariance matrix for all classes.

Proposition 1. When X and � assume the HOG model,
and m¿K − 1, any LDA optimal matrix is also Bayes
optimal.

For the proof of this proposition we refer the reader to
Ref. [19, pp. 87–90]. The proof is derived by considering
explicitly the optimal decision boundaries, which are hyper-
planes. In fact, not only is it shown that an LDA optimal
matrix is Bayes optimal, but it is also shown that the Bayes
error in the projected subspace is equal to the Bayes error
in the original space.

2.3. The HDA criterion

The homoscedasticity assumption needed for LDA Bayes
optimality is quite strict and may not be applicable to real
data. In Ref. [11] Kumar and Andreou considered a model
in which the classes PDFs are still gaussian, yet they are al-
lowed to have di0erent covariance matrices, under the con-
dition that both means and covariance matrices coincide in
a subspace of the observation space. They then followed a
maximum likelihood approach and derived a criterion for
DLFE to 2nd the matrix that maximizes the probability of
this model given the available sample.

Before proceeding, we need to introduce the following
notational convention, which will be used throughout the
paper: Given any full rank projection matrix T , we will
denote by T c a full rank matrix whose columns span the
orthogonal complement of the space spanned by the columns
of T . We will also denote by T̃ the matrix T̃ =[TT c], whose

4 The LDA criterion can be expressed in several other equivalent
forms. For more information, see Ref. [21, p. 446].
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Fig. 1. A two-dimensional, two-class KAH model example. The
shaded areas correspond to (x− �k)

��−1
k (x− �k)6 1.

columns span the whole space. Using this convention, we
now formally de2ne Kumar and Andreou’s heteroscedastic
model:

De�nition 2 (KAH model). Let X and � be random vari-
ables taking values at X ⊆ Rn and C={!k}K1 respectively.
We say that X and � assume Kumar and Andreou’s het-
eroscedastic model (KAH) if

(1) X|�=!k ∼ N(�k ; �k); ∀k ∈{1; : : : ; K}, i.e. the PDF
of each class follows the gaussian distribution, with
distinct mean and covariance matrix (heteroscedastic-
ity assumption) and

(2) There exists an integer d; d¡n and a full rank matrix
F of dimension n× d, such that, for all the class con-
ditional means F̃��k and class conditional covariance
matrices F̃��k F̃ of F̃�x, it holds

F̃��k =

[
F��k

Fc��

]
and

F̃��k F̃ =

[
F��kF 0

0 Fc��Fc

]
: (9)

In words, the assumptions made are that the classes may
follow di0erent gaussian distributions but their di0erences
lie solely in a subspace of Rn of d dimensions, whereas in
the complementary subspace of n − d dimensions they are
identical, i.e. this latter subspace is useless for distinguishing
the classes.

Fig. 1 shows a two-dimensional two-class example where
the KAH model holds. The two class conditional PDFs

assume di0erent gaussian distributions:

N

([
−
√
2√
2

]
;

[
1 0

0 1

])
and

N

([
0

0

]
;

[
2 −1

−1 2

])
:

Notice that the means and covariances along the �-axis (’=
�=4) are the same for both classes and therefore the �-axis is
useless for classi2cation. Thus the KAH model is satis2ed
with d= 1 and

B =− 1√
2

[
1 −1

−1 1

]
;

the 3�=4 rotation matrix.
Kumar and Andreou assume that d is somehow known, so

that the DLFE task reduces to extractingm=d features. They
construct a criterion to determine, in a maximum likelihood
sense, among all full rank matrices A of dimension n × d
and their corresponding Ac, the matrices which recover the
“useful” and “useless” space for distinguishing the classes.
Thus, the HDA criterion requires to 2nd the set ÂHDA of
matrices de2ned by

ÂHDA = argmax
A

[
−log |Ac��Ac|

−
K∑
k=1

p(!k) log |A��kA|+ 2 log |Ã|
]
; (10)

where Ã = [AAc]. Any matrix that yields the maximum in
Eq. (10) will be called HDA optimal matrix. 5 ; 6

In Ref. [23], it is shown that, for equal class-covariance
matrices, the HDA criterion 2nds the same subspace as the
LDA criterion. However, there has not been any direct proof
that the HDA solution is Bayes optimal within the KAH
model.

2.4. The MMI criterion

In contrast with LDA and HDA, the MMI criterion for
feature extraction has been derived from a di0erent path,
using concepts from information theory and their relation
with the Bayes error.

Consider 2rst the entropy H(�) as a measure of uncer-
tainty about the class value. Entropy is a functional of the
PDF of the class variable, averaged over its possible val-
ues, such that complete knowledge of class value (positive
probability for only one value) corresponds to zero entropy

5 In Eq. (10), it is assumed that |Ã| is positive. As noticed by
Kumar, this is not a real constraint, since we can always consider
an equivalent A by multiplying any columns of A with −1 (see
Ref. [11]).

6 In Ref. [22], Schukat-Talamazini et al. derive a special case of
criterion (10) in a hidden Markov model context with an additional
orthonormality constraint on Ã.
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whereas equal probability for all classes values corresponds
to maximum entropy. The most popular form of entropy is
the Shannon entropy

H(�) =−
∑
k=1:::K

p(!k) log[p(!k)]: (11)

The knowledge of a feature vector X related somehow to
the class reduces our uncertainty about the class. Thus, we
de2ne the uncertainty of � when X is known, i.e. the feature
vector-conditional class entropy, as equivocation

H(�|X) = EX[H(�|X = x)]

=−EX

[∑
k

p(!k |x) log[p(!k |x)]
]
: (12)

In addition, we de2ne the gain in information on � by
knowledge of X as

I(�;X) =H(�)−H(�|X): (13)

For Shannon entropies, the above quantity has the important
property of being symmetrical in its two arguments [24], i.e.
it holds that

I(�;X) =I(X;�) =H(X)−H(X|�) (14)

and I(�;X) is commonly known as the mutual informa-
tion between the class and the observation. For a detailed
discussion of entropy and mutual information the reader is
referred to Ref. [25]. In this paper, we shall keep referring
the reader to Ref. [25] to help establish some of the more
technical points in the proofs of various propositions.

Since equivocation and mutual information relate the
knowledge of X to that of �, they can be used to formulate
criteria for discriminative feature selection: given a set of
features, one should choose a subset that minimizes equiv-
ocation or, equivalently, maximizes mutual information.
The argument holds also for DLFE. Thus, given a positive
integer m¡n, the MMI criterion requires to 2nd among all
possible full rank n × m matrices the set ÂHDA of matrices
de2ned by

ÂMMI = argmax
A

I(�; A�X): (15)

Any matrix ÂMMI that yields the maximum in Eq. (15) will
be called MMI optimal matrix.

It has been shown that mutual information between the
class and the observation is related to the Bayes error of
the class given the observation, via lower and upper bounds
(see Ref. [13]). For the DLFE case, these bounds become 7

H(�)−I(�; A�X)− 1
log(K − 1)

6 Pe(�|A�X)

6
H(�)−I(�; A�X)

2
: (16)

7 For a tighter lower bound, known as Fano’s bound, as well as
for a general discussion of bounds for the probability of error, see
Ref. [13].

To conclude this section, let us summarize the properties of
the criteria: The LDA criterion has been de2ned as a separa-
bility measure and is Bayes optimal under the HOG model.
The HDA criterion is derived by applying the maximum
likelihood principle to the KAH model. For equal covari-
ance matrices it reduces to the LDA criterion and is there-
fore also Bayes optimal under the HOG model, but there
is no direct proof of its Bayes optimality within any more
general model. The MMI criterion originates from an infor-
mation theoretic point of view and is connected to the Bayes
error only via lower and upper bounds. The remainder of
this article is concerned with creating a bridge between the
criteria, by giving answers to the following questions:

• Are there any conditions under which Bayes optimality
can be guaranteed for HDA and MMI?

• Are there any conditions under which the DLFE subspaces
extracted by two or more of the above criteria coincide?

3. The ZIL model and conditions for Bayes optimality
of the MMI criterion

In this section we examine su3cient conditions under
which the MMI optimal matrix is also Bayes optimal. To
this end, we propose to view the DLFE problem as a source
recovering problem, and impose constraints on the proba-
bility densities, so that Bayes optimality of the MMI opti-
mal matrix can be guaranteed. The results of this section are
used later in Section 5, where the relationship among DLFE
criteria is investigated.

The DLFE task, as de2ned in Section 2.1 is viewed as
2nding a suitable matrix which transforms the original ob-
servation vector x to an observation vector of reduced di-
mensionality. However, it is possible to view DLFE from
a reverse point of view. Let us assume that the observation
vector x is in fact the result of linearly mixing up a “source”
vector and a “noise” vector by a non-singular n× n matrix
B, as

x = B�
[
s

�

]
:

The source vector s∈Rd contains the information useful
for identifying classes. On the other hand, the noise vec-
tor, �∈R(n−d) contains information that is redundant for the
classi2cation, when the source vector is known. In proba-
bilistic terms, with s; �; !k considered as instances of ran-
dom variables S; Z and�, we can formulate this assumption
as follows:

p(!k |s; �) = p(!k |s)
for all s; � and !k , i.e. the conditional probability of each
class given both the source and the noise vector equals its
conditional probability given solely the source vector. This
requirement makes sense, since the common implicit as-
sumption in DLFE is that there is part of the observation
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Fig. 2. The dependence graph between the variables. Straight lines
denote probabilistic dependence, whereas the dashed line functional
dependence. Notice that Z is related to � only through S.

vector lying in a noise subspace, the knowledge of which
does not change the class probability when the other part,
which lies in the source subspace, is known.

When B is known, we can evaluate its inverse G̃ = B−1

and recover complete knowledge of S and Z from X. How-
ever, the mixing matrix is not known, and the DLFE task
can be viewed as estimating the un-mixing matrix G̃ us-
ing solely the probability assumptions about the source and
noise vectors.

Based on the above rationale, we now formally de2ne
the proposed model, under the name of Zero Information
Loss model. The name stems from the fact that, as it will
be proved shortly, mutual information with the class is not
lost if only the source vector is retained.

De�nition 3 (ZIL model). Let X and � be random vari-
ables taking values at X ⊆ Rn and C={!k}K1 respectively.
We say that X and � assume the zero information loss (ZIL)
model, if there exist

(1) an integer d with d¡n and
(2) a full rank matrix G of dimension n× d,

such that for the vectors s = G�x (source vector) and � =
Gc�x (noise vector), considered as instances of the random
variables S and Z respectively, it holds that

p(!k |s; �) = p(!k |s); ∀X∈X; !k ∈C: (17)

The subspaces of Rn spanned by the columns of G and Gc

will be termed source subspace and noise subspace respec-
tively.

Fig. 2 shows a graph representing the relations that hold
between the random variables involved in the ZIL model.
First, the observation, X, is connected in probability with
the class, which reLects the fact that knowing the observa-
tion changes the probabilities for the class. The same holds

Fig. 3. A two-dimensional, two-class ZIL model example.

for the source, S. However, the noise, Z, is only indirectly
connected with the class, through the source, i.e. although
knowing the noise may be pertinent for the class, this knowl-
edge is already contained in the source. Moreover, the direct
connection between the source and the noise reLects the fact
that these variables are not necessarily independent, i.e. they
may be jointly distributed. Finally, the dotted line represents
the functional relation that exists between the observation,
on the one hand, and the source and the noise on the other,
through the mixing/unmixing matrices B and G̃.

To illustrate the ZIL model, a two-dimensional, two-class
setting is shown in Fig. 3. The observation vector assumes
uniform distribution inside three unit-radius circles, centered
at[

0
√
2

]
;




√
2

2
√
2


 and

[
0

−
√
2

]
;

denoted by C1; C2 and C3 respectively. The probability of
the observation outside the circles is null and thus we may
takeX=C1∪C2∪C3 and p(x)=1=3�; ∀x∈X. Moreover,
the probability of the 2rst class given the observation vector
is

p(!1|x) =
{

1 ∀x∈C1;

0 ∀x∈C2 ∪ C3

and reversely for the second class. Now, to see that the
ZIL model holds, consider the s and � axes drawn at angles
’= �=4 and ’= 3�=4, respectively, and the projections of
the circles along these axes, Cs1 = (0; 2); C�1 = (0; 2); Cs2 =
(2; 4); C�2 = (0; 2); Cs3 = (−2; 0), and C�3 = (−2; 0). Note



S. Petridis, S.J. Perantonis / Pattern Recognition 37 (2004) 857–874 863

that, in this example, s and � are jointly distributed. It can
easily be seen that, along the s-axis,

p(!1|s) =
{

1 ∀s∈Cs1;

0 ∀s∈Cs2 ∪ Cs3

and reversely for the second class, which implies that
p(!k |x) = p(!k |s); ∀x∈X; k = 1; 2, and thus the ZIL
model holds with d= 1 and

B =
1√
2

[
1 1

−1 1

]
;

i.e. the �=4 rotation matrix. In addition, notice that the same
does not hold for �, since the projections of clusters C1 and
C2 completely overlap, giving

p(!1|s) =
{ 1

2 ∀�∈C�1 ∪ C�2 ;

0 ∀�∈C�3

i.e. p(!1|x) �= p(!1|�).
Another ZIL model example will be given in Section 6.
We now prove the following fundamental properties of

the ZIL model, which will help us examine the issue of
Bayes optimality of the MMI and other DLFE criteria within
this model:

Lemma 1. Let X and � conform to the ZIL model for
source space dimension equal to d. Then X and � conform
to the ZIL model for any d′; d¡d′6 n.

Lemma 2. Under the ZIL model,

(1) Pe(�|X) = Pe(�|S)
(2) I(�;X) =I(�;S)

Lemma 3. Consider a classi�cation problem that complies
to the assumptions of the ZIL model. Given an integer
m¿d, let A be an n×m full rank matrix. Then, A is MMI
optimal if and only if

p(!k |A�x;Ac�x) = p(!k |A�x) ∀x∈X; !k ∈C: (18)

The proofs are given in Appendices A.1, A.2 and A.3.
Note that Lemma 2 means that performing classi2cation

keeping solely the source vector does not a0ect either the
Bayes error or mutual information. This assertion justi2es
the name given to the model (zero information loss).

As it has been said earlier in Section 2.4, the MMI cri-
terion is related to the Bayes error only by means of lower
and upper bounds. This implies that, in general, an optimal
MMI extracted subspace is not guaranteed to be Bayes opti-
mal. However, we are now in a position to show that under
the ZIL model, any MMI optimal matrix yields minimum
Bayes error:

Proposition 2. Let X and � assume the ZIL model with
source subspace dimension d. Then any MMI optimal ma-
trix A of dimension n× m; m¿d is also Bayes optimal.

Proof. By Lemma 2, the Bayes error using any vector that
complies to the source vector assumption of the ZIL model
equals the Bayes error using the whole observation vector,
and hence it is minimum. Moreover, by Lemma 3, the MMI
optimal matrices recover only such vectors. It follows that
any MMI optimal matrix is also Bayes optimal.

4. Formal similarity of DLFE criteria

From the discourse in Section 2 it is evident that the LDA,
HDA and MMI criteria are derived using di0erent rationales
and result in di0erent mathematical forms. The aim of this
section is to put these criteria in a mathematical form that fa-
cilitates their comparison and elucidates the points in which
they di0er.

The results of this section which are summarized in Propo-
sition 3, together with the results of Section 3 will be used
in Section 5 to investigate a deeper similarity of the criteria.
Before proceeding to the main proposition of this section,
however, we need to introduce the concepts of gaussian en-
tropy and negentropy.

To begin, consider a continuous n-dimensional random
variable following the gaussian distribution N(�; �). It can
easily be seen that its entropy is given by 1

2 log(2�e)
n|�|.

The reader is referred to Ref. [25, p. 230] for a proof. Now,
consider an n-dimensional continuous random variable X,
with covariance �.

• The gaussian entropy of X;Hg(X), is the entropy of a
gaussian variable with the same covariance matrix as X:

Hg(X) =
1
2
log(2�e)n|�|: (19)

• The negentropy of X; J(X), is the di0erence of the en-
tropy of X and its gaussian entropy:

J(X) =Hg(X)−H(X): (20)

It can be shown [26] that negentropy is always a positive
quantity and vanishes when the random variable is gaussian.
Negentropy may be viewed as a measure of non-gaussianity
and has thus been extensively used in the ICA literature
(see Ref. [26]). Here we emphasize the fact that these def-
initions allow for a split of the entropy in two terms: the
gaussian term, which depends on the covariance matrix, and
the negentropy term which may be attributed to higher order
statistics.

The concepts of gaussian entropy and negentropy can be
naturally extended to account for the class conditional case,
as follows:

• The conditional gaussian entropy of x given �=!k and
the average conditional gaussian entropy of x given �
are

Hg(X|!k) =
1
2
log(2�e)n|�k | and (21)

Hg(X|�) =
∑
k

p(!k)Hg(X|!k): (22)
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• The conditional negentropy of x given � = !k and the
average conditional negentropy of x given � are

J(X|!k) =Hg(X|!k)−H(X|!k); and (23)

J(X|�) =
∑
k

p(!k)J(X|!k): (24)

It is straightforward to show that for the conditional case,
as in Eq. (20), it holds that

J(X|�) =Hg(X|�)−H(X|�): (25)

We now proceed to the following proposition which refor-
mulates the three DLFE criteria using similar mathematical
formulas:

Proposition 3. LetX be a continuous random variable tak-
ing values from X ⊆ Rn and � be a discrete random vari-
able taking values fromC={!k}K1 . Let � be the covariance
matrix of X and �k be the covariance matrix of X given
the class !k . Given a positive integer m with m¡n, let A
be a full rank matrix of dimension n×m. Then, the sets of
LDA, HDA and MMI optimal matrices can be found as

ÂLDA = argmax
A

[
log

|A��A|∑K
k=1 p(!k)|A��kA|

]
; (26)

ÂHDA = argmax
A

[
log

|A��A|∏K
k=1 |A��kA|p(!k )

]
; (27)

ÂMMI = argmax
A

[
log

|A��A|∏K
k=1 |A��kA|p(!k )

− 2(J(A�X)−J(A�X|�))
]
: (28)

The proof is given in Appendix A.4. We stress the fact
that the formulas in Proposition 3 are quite general and
hold independently of the model assumed for the underlying
data. The formal similarity is evident: HDA di0ers from
LDA only in the aggregation operator (weighted product vs
weighted sum), whereas MMI di0ers from HDA only in the
additional negentropy terms. 8

5. Relation of models and equivalence of DLFE criteria

In this section we explore a deeper relation that exists
between the LDA, HDA and MMI criteria. The connection

8 A one-dimensional form of Eq. (27) is reported in Ref. [27].
Moreover, in Ref. [28], a criterion of similar form, though not the
same, has been proposed, based on heuristic grounds, where instead
of the overall covariance matrix, the between class covariance
matrix is used.

between the criteria is established by relating the mod-
els under which su3cient conditions for Bayes optimality
hold.This allows us to re-derive the LDA criterion based on
the MMI criterion and to prove the Bayes optimality of the
HDA criterion under the KAH model.

5.1. Relations between the ZIL, KAH and HOG models

The following proposition asserts that the KAH model is
a special case of the ZIL model and that the HOG model is a
special case of the KAH model. This creates an “hierarchy”
of models, summarized schematically in Fig. 4.

Proposition 4. Consider the HOG,KAH and ZIL models,
as de�ned in De2nitions 1, 2, and 3 respectively.

• If the classi�cation problem conforms to the assumptions
of the KAH model, it also conforms to the assumptions
of the ZIL model. The unmixing matrix is obtained by
G = F̃ while the source and noise vectors are obtained
by s = F�x and � = Fc�x respectively.

• If the classi�cation problem conforms to the assumptions
of the HOG model, it also conforms to the assumptions
of the KAH model with the source space dimension d
equal to min(K − 1; n).

The proof is given in Appendix A.5.
Summarizing the proof, we can say that the KAH model

is a ZIL model with two additional constraints: (a) both
the source vector and the noise vector are gaussian and
(b) the noise vector is also completely independent (as well
as source-conditionally independent) of the class. Also, as it
is evident from Ref. [19], the HOG model may be viewed as
a KAH model with two additional constraints: (a) the class
conditional covariance matrices are equal, and (b) the num-
ber of classes is at most d + 1. These identi2cations allow
us to speak of “source” and “noise” vectors and the corre-
sponding “source” and “noise” subspaces in connection with
the KAH and HOG models.

5.2. Equivalence and Bayes optimality of feature
extraction criteria

Given the similarity between the formal expressions of the
three DLFE criteria established by Proposition 3, a question
that naturally arises is the following: Are there any condi-
tions under which these criteria do actually coincide? In this
section, we show that the criteria do coincide under certain
assumptions about the models obeyed by the classi2cation
data. Moreover, the issue of equivalence of two or more cri-
teria is closely related with the issue of Bayes optimality.

First, we examine the MMI criterion under the KAH
model. However, before presenting the basic result, we
prove the following lemma:
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Fig. 4. This 2gure summarises most of the results of this paper. It
shows the hierarchy of models (for a speci2c value of the source
subspace dimensionality, the HOG model is a special case of the
KAH model which in turn is a special case of the ZIL model). It
also depicts the equivalence and Bayes optimality of DLFE criteria
under the various models, when the number of the extracted features
is greater or equal to the source subspace dimension.

Lemma 4. Consider a classi�cation problem conforming
to the KAH model and the corresponding source vector
S=F�X.Then, for any matrixA of dimension n×m; m6 n,
it holds

J(S)¿J(A�X) (29)

i.e. the source vector has maximum negentropy among all
projected vectors.

The proof is given in Appendix A.6. Using this lemma,
we are now ready to show the following

Proposition 5. Under the KAH model, when m¿d, the
MMI criterion reduces to the HDA criterion. Moreover,
the MMI and HDA optimal matrices are also Bayes
optimal.

Proof. First, notice that when the class-conditional PDFs
are gaussian, the conditional negentropies of the observation
given the class vanish, so that the MMI criterion becomes

ÂMMI = argmax
A

fMMI(A
�X); (30)

where

fMMI(A
�X) = fHDA(A

�X)− 2J(A�X) (31)

and

fHDA(A
�X) = log

|A��A|∏K
k=1 |A��kA|p(!k )

: (32)

With a minor rearrangement, we obtain:

fHDA(A
�X) = fMMI(A

�X) + 2J(A�X) (33)

from where it can be seen that fHDA(A�X) is maximized if
and only if fMMI(A�X) + 2J(A�X) is maximized.

Now, by Lemma 3, it is known that, under the ZIL
model, which includes the KAH model, and when m¿d;

fMMI(A�X) is maximized if and only if A recovers vectors
that comply to the source vector assumption. On the other
hand, Lemma 4 asserts that, for m = d, such vectors also
maximise the negentropy. Moreover, by Lemma 1, this will
also hold for any m¿d.

This implies that fMMI(A�X) + 2J(A�X), and thus
fHDA(A�X), is also maximized if and only if A recovers
vectors that comply to the source vector assumption. Hence,
under the KAH model, to 2nd the matrices that maximize
the MMI criterion, one can ignoreJ(A�X) and 2nd the ma-
trices that maximize solely fHDA(A�X). Therefore, under
the KAH model, the MMI and HDA criteria are equivalent.

Furthermore, we know that the MMI criterion yields a
Bayes optimal matrix under the ZIL model (Proposition 2).
Since the KAH model is a special case of the ZIL model
(Proposition 4), MMI also yields a Bayes-optimal matrix
under the KAHmodel. SinceMMI reduces to the HDA crite-
rion, as concluded above, HDA also yields a Bayes-optimal
matrix under the KAH model.

We now examine the relation between HDA and LDA
under the HOG model.

Proposition 6. Under the HOG model, when m¿K − 1,
the MMI and HDA criteria reduce to the LDA criterion.
Moreover, the MMI,HDA and LDA optimal matrices are
also Bayes optimal.

Proof. First we show that the HDA criterion reduces to the
LDA criterion under the HOGmodel. In fact, this has already
been proved by Kumar [11]. Still, we present here a direct
proof, based on the formal similarity of the criteria. Under
the HOG model, all class-conditional covariance matrices
are equal, i.e. �k = O� ∀k ∈{1 : : : K}, and hence HDA (as
given in Eq. (27)) directly simpli2es to

argmax
A

log
|A��A|
|A� O�A| : (34)

However, when all class-conditional covariance matrices are
equal, LDA, as given in Eq. (26), also simpli2es to Eq.
(34). Hence, HDA and LDA are equivalent. Moreover, by
Proposition 5, HDA recovers Bayes-optimal matrices under
the KAH model and hence (by Proposition 4) also under the
HOG model.

To conclude the proof, notice that MMI is equivalent to
HDA under the KAH model, and thus also under the HOG
model. As a result, in the HOG model, MMI is equivalent
to LDA and recovers Bayes optimal matrices.

Fig. 4 summarizes the results of Propositions 1, 2, 4, 5
and 6 by showing the hierarchy of the models as well as the
equivalence and Bayes optimality of the criteria.

We conclude this subsection by stressing that Propositions
5 and 6 have a very important interpretation: applying the
MMI criterion to the KAH model we end up with the HDA
criterion, which simpli2es to the LDA criterion under the
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Fig. 5. Graph for the example of Fig. 1. The curves show the values
of the three criteria as functions of the projection angle. Each curve
has been rescaled between 0 and 1 to facilitate visualization. The
solid line corresponds to the MMI criterion, the dotted line to the
HDA criterion and the dashed line to the LDA criterion. The angles
selected by the criteria correspond to the points where the curves
exhibit their maxima.

homoscedasticity assumption. Hence HDA and LDA can
be derived directly from an information theoretic path.

6. Examples

To illustrate the similarities and di0erences of LDA, HDA
and MMI we apply them in a series of two-dimensional
two-class examples. In all cases, the objective of the criteria
is to 2nd a one-dimensional projection, such that the two
classes, given the projection, are best separated. For easiness,
we will refer to the projection by the angle of the projection
axis relative to the x1 axis, ’; ’∈ [0; 2�]. The evaluation
of the criteria has been carried out numerically using the
distributions and the class conditional distributions of the
observations.

Example 1. Consider the classi2cation problem illustrated
in Fig. 1. As discussed in Section 2.3, this problem conforms
to the KAH model with d = 1 and source projection at
’ = 3�=4. In this problem, the Bayes optimal angle is also
’ = 3�=4, because the Bayes error for this projection is
equal to the Bayes error for the whole plane. This can be
easily veri2ed either by direct evaluation of the marginal
probabilities, or by applying Lemma 2.

According to Proposition 5, the HDA andMMI criteria are
expected to 2nd the same Bayes optimal angle. On the other
hand, LDA is not guaranteed to 2nd the optimal projection,
since the covariance matrices of the classes are di0erent, and
thus the HOG model is not satis2ed. Indeed, as is shown in
the graph of Fig. 5, both HDA and MMI succeed in 2nding
the Bayes optimal angle, ’ = 3�=4, whereas LDA fails,
giving maxima at ’ ∼ 0:54� and ’ ∼ 0:96�.
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Fig. 6. A two-dimensional, two-class ZIL model example.

Example 2. As a second example, consider the classi2ca-
tion problem shown in Fig. 6. This is similar to the prob-
lem of Fig. 1, but now the second class is split into two
equiprobable clusters, the extra cluster following the gaus-
sian distribution

N




 2

√
2

−2
√
2


 ;
[
1 0

0 1

] :

Since not all the class conditional observations assume gaus-
sian distributions, the KAH model does not hold any more.
However, the ZIL model still holds. This can be veri2ed
as follows: First, along the source and noise axes, which
are the same as before, p(s; �) = p(s)p(�), i.e. the source
and the noise are independent. The independence statement
holds also for each class separately, and, since the dis-
tribution of the observation along the � projection is the
same for all classes, it follows that p(s; �|!)=p(s|!)p(�).
This leads directly to the probability assumption of the ZIL
model (cf. also the path followed in the proof of Lemma 4,
Eqs. (A.35)–(A.37)).

According to Proposition 2 the MMI criterion is expected
to 2nd the Bayes optimal angle, which remains ’=3�=4. On
the other hand, LDA and HDA are not guaranteed to 2nd the
optimal projection, since the distributions are not gaussian,
and thus the KAH and HOG model are not satis2ed. As seen
from the graph in Fig. 7, while the MMI criterion indeed
succeeds in 2nding the Bayes optimal angle, the HDA and
LDA criteria fail.

Example 3. Consider now the classi2cation problem of
Fig. 3. As discussed in Section 3, the ZIL model holds with
d = 1 and source subspace at ’ = �=4. From the 2gure,
one can easily see that the classes are perfectly separated
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Fig. 7. Values of the criteria for the example of Fig. 6.
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Fig. 8. Graph for the example of Fig. 3. Notice that only MMI is
maximized at angle ’ = �=4, where Bayes optimality holds.

along the s-axis, and therefore the Bayes optimal angle is
’ = �=4. Notice also that neither the KAH nor the HOG
model conditions are satis2ed, since the class conditional
distributions are not gaussians.

According to Proposition 2, only the MMI criterion is
guaranteed to be optimal. Indeed, as is shown in Fig. 8
the MMI criterion succeeds in 2nding the Bayes optimal
projection, ’ = �=4, whereas HDA and LDA fail, giving
maxima at ’ ∼ 0:43� and ’ ∼ 0:88� respectively.

Example 4. Propositions 2, 5 and 6 give su3cient condi-
tions for Bayes optimality of the three DLFE criteria. How-
ever, these conditions are not necessary. Hence, it should
not be induced that LDA, respectively HDA, will fail when-
ever the HOG, respectively KAH, model is not satis2ed, nor
that MMI is guaranteed to be superior to HDA and LDA
outside the ZIL model.

To illustrate this fact, consider, as a last case, the following
variation of the classi2cation setting of Fig. 1: the second
class assumes the gaussian distribution

N

([
0

0

]
;
1
2

[
3 −1

−1 3

])
;
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Fig. 9. Graph for the variation of Fig. 1. Notice that all criteria
exhibit maxima at the Bayes optimal angle (’ = 3�=4).

i.e. its variance is still stressed along the s-axis but less than
before. It can be veri2ed that the KAH, and hence the ZIL,
model hold, whereas the HOG does not, since the covariance
matrices of the two classes are still not the same. However,
as shown in Fig. 9, this time, all three methods succeed in
2nding the optimum, which shows that the LDA criterion
may be Bayes optimal outside the HOG model.

7. Discussion and prospects

7.1. LDA as a special case of ICA

Independent component analysis (ICA) is an unsuper-
vised method for source separation relying on higher order
statistics [26]. ICA results also in a linear transform, requir-
ing that the discovered sources be maximally independent.
It has been shown that this amounts to 2nding sources with
maximum negentropy (see, for instance, Ref. [29]). The ba-
sic assumption of ICA is that all sources are non-gaussian,
except possibly one. Moreover, an extension of ICA, mul-
tidimensional independent component analysis [20], allows
for sources to be multidimensional.

Looking back at Lemma 4, notice that to recover the
source space, one may as well seek the subspace that max-
imizes negentropy. This is actually equivalent to perform-
ing multidimensional ICA distinguishing between the source
subspace and the gaussian subspace. This result may be also
viewed as a transition point between supervised and unsu-
pervised feature extraction: should the classes assume gaus-
sian distributions, we do not need supervised training to
recover the source subspace. However, one should be aware
that this only holds if classes PDFs are also gaussian in the
noise subspace, i.e. the noise is gaussian.

7.2. Bounds for suboptimal LDA

The propositions on the Bayes optimality of the LDA,
HDA and MMI criteria are relying on the assumption of a
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totally noisy subspace, i.e. a subspace that does not further
reduce the probability of misclassi2cation, given the com-
plementary source space. When such a space does not exist,
or its dimensionality is smaller than the one we seek (i.e.
the number of linear features we wish to extract is less than
the number of features that contain all the discriminatory
information), these criteria are not guaranteed to be Bayes
optimal. A question that arises, then, is how suboptimal are
the extracted features with respect to the optimal ones.

In particular, under the HOG model, LDA is known to
be suboptimal when extracting less than K − 1 features [19,
p. 92]. By the same arguments that led to the formal simi-
larity of the criteria (see Section 4), we may derive bounds
for LDA, using the bounds that hold for the MMI criterion,
as discussed in Section 2.4. Under the HOG model,

H(A�X|�) =Hg(A
�X|�) = 1

2
log(2�e)m|A� O�A|;

H(A�X) =Hg(A
�X)−J(A�X)

=
1
2
log(2�e)m|A��A|

and hence

I(�;X) =
1
2
log(2�e)m

|A� O�A|
|A��A| −J(A�X): (35)

However,

|A� O�A|
|A��A| =

m∏
i=1

�i;

where �i are the m larger generalized eigenvalues of O�−1�
(see Ref. [21, p. 449]) and thus, bounds (16) become

H(�)− 1=2
∑m

i=1 [log(2�e)
m�i] +J(A�X)− 1

log(K − 1)

6Pe(�|A�X)

6
H(�)− 1=2

∑m
i=1 [log(2�e)

m�i] +J(A�X)
2

: (36)

These bounds provide an estimate of the Bayes error in the
extracted subspace. Concerning the negentropy term, notice
that there is no analytical expression in general to evalu-
ate J(A�X). However, A�X follows a mixture of gaussian
distributions and, therefore, we conjecture that it can be ap-
proximated based on second order statistics of the class con-
ditional distributions.

7.3. Prospects

Beyond the equivalence of the MMI criterion with HDA
and LDA under the KAH and HOG models respectively,
a “bottom line” question is which criterion to choose for
linear feature extraction, when we have no knowledge about
the distributions of the classes. According to Proposition 5,

any method based on MMI can never be worse than LDA
or HDA, when the ZIL model holds. However, one should
be aware of two caveats. (Table 1).

First, in a practical setting, the search for the maxima of
the criteria has to be carried out using some optimization
technique and the functions have to be estimated from a
limited size sample set. Consequently, robustness or com-
plexity issues have to be considered before choosing the cri-
terion to apply and it may turn out in the end that LDA is a
preferable criterion because of its simplicity.

Second, the results of this article do not guarantee that the
theoretical superiority of MMI against HDA and the superi-
ority of HDA against LDA hold outside the ZIL and KAH
model respectively: our work has resulted in su3cient, but
not necessary, conditions for criteria equivalence and opti-
mality. It could be claimed that MMI will continue to have a
theoretical advantage, since it exploits much more than 2rst
and second order statistics. This claim has been supported
by experimental evidence (see Refs. [11,18]), where both
HDA and MMI do compare favorably to LDA. Still, work
similar to ours that would yield necessary conditions for
Bayes optimality and equivalence of DLFE criteria would
be a very signi2cant step for gaining important insight into
the foundations of DLFE.

Moreover, we believe that this paper can be used as a
starting point for a more thorough theoretical investigation
of the relation of these criteria under departure from the ZIL
assumptions. Finally, as mentioned before, although MMI
is generally considered as a very e3cient DLFE criterion,
its evaluation is quite di3cult and usually requires approx-
imations to make it tractable. Our result that LDA can be
derived as a special case of MMI through a purely infor-
mation theoretic approach could initiate a search for other
simpli2cations of MMI along the same line that could yield
new DLFE criteria combining the e3ciency of MMI with
improved computational tractability.

Summary

Discriminant linear feature extraction (DLFE) is the task
of reducing the dimension of the pattern observation space
by 2nding a suitable linear subspace in which the class
separability is optimally maintained. The importance and
bene2ts of DLFE in a pattern recognition system have been
emphasized even when combined with very competent clas-
si2er models.

In this paper we focus on three methods for DLFE,
stemming from di0erent points of view: the statistical
“linear discriminant analysis criterion (LDA), the het-
eroscedastic discriminant analysis criterion (HDA) and the
information-theoretic maximization of mutual information
criterion (MMI). LDA, has a long tradition in statistics and
pattern recognition with many variations and applications.
HDA is a more recent approach derived by applying the
maximum likelihood principle in a heteroscedastic model.
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Table 1
Nomenclature

DLFE Discriminant linear feature extraction
LDA Linear discriminant analysis
HDA Heteroscedastic discriminant analysis
MMI Maximization of mutual information
ICA Independent component analysis
HOG Homoscedastic Gaussian (model)
KAH Kumar and Andreou’s heteroscedastic (model)
ZIL Zero information loss (model)
Pe Bayes classi2cation error
x∈X ⊆ Rn n-dimensional observation vector
X n-dimensional observation random variable
!k ∈C = {!k}K1 kth class in classi2cation problem
� Random variable taking values from C

�; � Overall mean and covariance matrices of X
 k ; �k Class conditional mean and covariance matrix corresponding to kth class
O� Average class conditional covariance matrix of X
m Number of extracted features
A;Ac; Ã Matrices extracting DLFE subspace, its orthogonal complementary subspace and Ã = [AAc]
ÂLDA, ÂHDA, ÂMMI, ÂBayes Set of optimal matrices (with respect to the LDA, HDA, MMI and Bayes error criteria)
F̃; F; Fc Unmixing matrices for the KAH model
B, G̃, G, Gc Mixing and unmixing matrices for the ZIL model
s, S Source vector and random variable
�, Z Noise vector and random variable
Q n× n Sphering matrix
!;!c; !̃ n× m-dimensional sphered matrices
H(�) Entropy of the class
H(�|X) Equivocation of the class given X
I(�;X) Mutual information between � and X
J(X) Negentropy of X

The MMI principle has also been known for long as a
natural criterion for evaluating the separability quality of
features and has recently motivated the development of
successful linear feature extraction algorithms.

The purpose of this paper is to provide a uni2ed view of
these DLFE criteria by

• emphasizing their similarity through expressing them in
a common framework and with mathematical forms that
resemble each other

• investigating conditions under which these criteria re-
cover subspaces that are Bayes optimal, in the sense that
the minimum possible Bayes error is obtained, and hence
optimal classi2cation accuracy is ensured

• proposing conditions on the underlying probabilities of
the observation data model under which two or more of
the above criteria coincide, in the sense that they recover
identical subspaces of the original observation space.

The 2rst objective is met by proposing new model-indepen-
dent mathematical forms for the three criteria that stress

their similarities and elucidate their di0erences. To meet
the second and third objectives, we state the DLFE prob-
lem as a source recovering problem. We introduce the fol-
lowing hierarchy of models on the observation space vari-
ables: the homoscedastic gaussian model (HOG), Kumar
and Andreou’s heteroscedastic class-conditional gaussian
model (KAH) and a more general model which we call zero
information loss model (ZIL). It is shown that each of these
models is a special case of the next one in the hierarchy. It
is also demonstrated that under the ZIL model the MMI cri-
terion is Bayes optimal. Moreover, our analysis shows that
under the KAH model the MMI criterion coincides with the
HDA criterion and both criteria reach Bayes optimal solu-
tions. Also, under the more restricted HOG model all three
criteria coincide and are Bayes optimal. These results al-
low for an information-theoretic derivation of the LDA cri-
terion. Finally, our discussion allows for an alternative in-
terpretation of LDA as a special case of multidimensional
independent component analysis and for the derivation of
suboptimality bounds for the LDA criterion based on infor-
mation theory.
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Appendix A. Proofs

A.1. Proof of Lemma 1

Since the classi2cation problem conforms to the ZIL
model with source space dimension d, there will exist a
noise vector � of dimension (n − d). Now consider that �
is split in two parts � = [�1; �2], and de2ne s′ = [s; �1] and
�′ = �2, such that the dimension of s′ becomes d′.

Then

p(!k |s′) = p(!k |s; �1) = EZ2 [p(!|s; �1; �2)]
= EZ2 [p(!k |s; �)] = EZ2 [p(!k |s)]
= p(!k |s) (A.1)

and

p(!k |s′; �′) = p(!k |s; �1; �2) = p(!k |s; �)
= p(!k |s): (A.2)

Thus,

p(!k |s′; �′) = p(!k |s′) (A.3)

i.e. the probability assumption of the ZIL model holds for
S′.

A.2. Proof of Lemma 2

Since linearly transforming the space by a non-singular
matrix does not change the Bayes error, it holds that

Pe(�|X) = Pe(�|[G Gc]�X) = Pe(�|G�X; Gc�X)

= Pe(�|S;Z): (A.4)

By using the Bayes error de2nition and the ZIL model as-
sumption (17), the above equation can be rewritten as

Pe(�|X) = Pe(�|S;Z) = 1− ES;Z

[
max
!k

p(!k |s; �)
]

= 1− ES

[
max
!k

p(!k |s)
]
= Pe(�|S): (A.5)

To prove the second part of the lemma, 2rst note that mutual
information is invariant under a non-singular linear trans-
form. To see that, consider the non-singular n × n matrix
Ã, Ã = [AAc] such that it spans the whole n-dimensional
space. By expressing mutual information as a di0erence of
entropies

I(�; Ã�X) =H(Ã�X)−H(Ã�X|�) (A.6)

and noticing that the entropy of a linearly transformed vec-
tor equals the entropy of the vector plus the logarithm of
the absolute value of the determinant of the transformation
matrix (see Ref. [25, p. 234]), we can write

I(�; Ã�X) =H(X) + log |Ã| − (H(X;�) + log |Ã|)
=H(X)−H(X;�) =I(�;X): (A.7)

Now, by the probability assumption of the ZIL model, and
the de2nition of Shannon entropy, it follows that

H(�|S;Z) =H(�|S): (A.8)

Therefore, using (A.7) and (A.8), we can write

I(�;X) =I(�; G̃�X) =I(�; G�X;Gc�X)

=H(�)−H(�|G�X;Gc�X)

=H(�)−H(�|S;Z)
=H(�)−H(�|S) =I(�;S): (A.9)

A.3. Proof of Lemma 3

To prove the lemma, we need two properties concerning
equivocation and mutual information. First for any two ran-
dom variables R1;R2 it holds that (see Ref. [25, p. 232])

H(R1|R2)6H(R1) (A.10)

with the equality holding if and only if

p(r1|r2) = p(r1)∀r1; r2 (A.11)

i.e., conditioning reduces entropy except if the variables are
independent.

Second, for a n× m, m6 n matrix A,

I(�;X)¿I(�; A�X) (A.12)

with equality holding if m = n. The equality part has been
shown in Lemma 2, Eq. (A.7). To see that the inequality
holds, notice that I(�;X) can be rewritten as

I(�;X) =I(�; Ã�X) =I(�; A�X;Ac�X): (A.13)

However, by the chain rule for mutual information (see Ref.
[25, p. 22])

I(�; A�X;Ac�X)

=I(�; A�X) +I(�; Ac�X|A�X) (A.14)

which implies

I(�; A�X;Ac�X)¿I(�; A�X) (A.15)

and therefore, by Eq. (A.13), property (A.12) holds.
Now let A be an n×mMMI-optimal matrix. By Lemma 1,

since m¿d, we can always 2nd a vector s′ of dimension m
that quali2es as source vector of the ZIL model. Moreover,
since A is MMI optimal, I(�; A�X) cannot be less than
I(�;S′). Also, as shown in Lemma 2,I(�;S′)=I(�;X)
and therefore I(�; A�X) cannot be less than I(�;X).
However, by Eq. (A.12), I(�; A�X) also cannot exceed
I(�;X). Hence,

I(�; A�X) =I(�;X): (A.16)

Furthermore, rewriting mutual information as a di0erence
of entropy and equivocation, and using Eq. (A.13), we have

H(�)−H(�|A�X)

=H(�)−H(�|A�X;Ac�X) (A.17)
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or

H(�|A�X) =H(�|A�X;Ac�X) (A.18)

which leads, by applying Eqs. (A.10)–(A.11), to

p(!k |A�x;Ac�x) = p(!k |A�x) ∀x; !k : (A.19)

Reversely, let A and Ac be matrices for which Eq. (A.19)
holds. Then, by Eqs. (A.10)–(A.11), Eq. (A.18) also holds
and, by following the reverse path, so does Eq. (A.16).
Therefore, by Eq. (A.12), A�X attains the maximum pos-
sible mutual information with the class and A is an MMI
optimal matrix.

A.4. Proof of Proposition 3

The LDA expression is easily derived from Eq. (8). By
replacing the average class conditional covariance matrix O�
by its de2nition (6), the denominator of Eq. (8) is rewritten
as

|A� O�A|=
∣∣∣∣∣A�

[
K∑
k=1

p(!k)�k

]
A

∣∣∣∣∣
=

K∑
k=1

p(!k)|A��kA| (A.20)

from which Eq. (27) follows.
The derivation of the HDA form is not so straightfor-

ward. First, consider an n × n matrix Q which transforms
the original space, such that the overall covariance matrix of
the observation in the transformed space becomes the unity
matrix, i.e.

Q��Q = In: (A.21)

Such a matrix is called a sphering matrix or whitening ma-
trix and can always be evaluated as the inverse of the prod-
uct of a matrix containing the eigenvectors of the covariance
matrix and a diagonal matrix containing the square roots of
the corresponding eigenvalues (see Ref. [30]).

Using sphering, the transformation of matrix Ã, as well
as of A and Ac can be decomposed as Ã=Q!̃, respectively
A = Q! and Ac = Q!c, i.e. a sphering step using Q and a
unmixing step using !̃= [!!c].

Now, by looking at Eq. (10), log |Ac��Ac| can be rewrit-
ten as

log |Ac��Ac|= log |(Q!c)��(Q!c)|
= log |!c�(Q��Q)!c|
= log |!c�!c|; (A.22)

where we have made use of Eq. (A.21). Moreover, notice
that

|!̃�!̃|= |[!!c]�[!!c]|=
∣∣∣∣∣
!�! 0

0 !c�!c

∣∣∣∣∣
= |!�!‖!c�!c|; (A.23)

where the zero submatrices originate from the fact that !
and !c are formed by vectors orthogonal to each other, and
hence they have zero product. Hence Eq. (A.22) becomes

log |Ac��Ac|= log |!̃�!̃| − log |!�!|: (A.24)

Since !=Q−1A, the second term on the right-hand side of
Eq. (A.24) becomes

log |!�!|= log |(Q−1A)�(Q−1A)|
= log |A�(Q−1�Q−1)A|
= log |A��A|; (A.25)

where we have made use of Eq. (A.21). Furthermore, since
!̃=Q−1Ã, the 2rst term on the right-hand side of Eq. (A.24)
becomes

log |!̃�!̃|= log |(Q−1Ã)�(Q−1Ã)|
= 2 log |Q−1|+ 2 log |Ã|
=−2 log |Q|+ 2 log |Ã|; (A.26)

where we have used the fact that Q and Ã are square matrices
and hence the determinant of their product equals the product
of their determinants. Thus, by Eqs. (A.25) and (A.26), Eq.
(A.24) becomes

log |Ac��Ac|=−2 log |Q|+ 2 log |Ã|
+ log |A��A|: (A.27)

Introducing Eq. (A.27) into Eq. (10), the terms containing
the matrix Ã cancel each other, and the criterion simpli2es
to

ÂHDA = argmax
A

[
log |A��A|

−
K∑
k=1

p(!k) log |A��kA|+ 2 log |Q|
]
: (A.28)

Now, notice that the determinant of the sphering matrix Q
is a constant term that does not a0ect the optimization and
thus it can be ignored. Hence, we end up with

ÂHDA = argmax
A

[
log |A��A|

−
K∑
k=1

p(!k) log |A��kA|
]

(A.29)

or, in a more compact form,

ÂHDA = argmax
A

log
|A��A|∏K

k=1 |A��kA|p(!k )
: (A.30)

The derivation for the MMI criterion is done using the ex-
pansion of entropies and conditional entropies in their gaus-
sian and negentropy parts. First, notice that the mutual infor-
mation of the extracted vector with the class can be written
as the di0erence between its unconditional and the average
class conditional entropy (14):

I(�; A�X) =H(A�X)−H(A�X|�): (A.31)
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Now, based on Eqs. (20) and (23), the above equation is
rewritten as

I(�; A�X) = (Hg(A
�X)−Hg(A

�X|�))
− (J(A�X)−J(A�X|�)): (A.32)

Finally the di0erence of gaussian entropies is further ex-
pressed as

Hg(A
�X)−Hg(A

�X|�)

=
1
2
log[(2�e)m|A��A|]

−
∑
k

p(!k)
1
2
log[(2�e)m|A��kA|]

=
1
2
log

|A��A|∏K
k=1 |A��kA|p(!k )

(A.33)

and by insertion of Eq. (A.33) into Eq. (A.32), and multi-
plication by 2 the criterion becomes

OAMNI = argmax
A

[
log

|A��A|∏K
k=1 |A��kA|p(!k )

− 2(J(A�X)−J(A�X|�))
]
:

A.5. Proof of Proposition 4

Here we prove the 2rst part of the proposition. For the
proof of the second part, the reader is referred to Ref. [11].

Consider the matrix F̃ = [FFc] as de2ned by the KAH
model. Then, by de2ning s = F�x and � = Fc�x, the prob-
ability assumption of the ZIL model is derived as follows:
First, since both source vector and noise vector are gaussian,
given the class, their joint distribution given the class will
be gaussian, and, under the KAH model, their covariance
matrix and its determinant will be[
F��kF 0

0 Fc��Fc

]
;

∣∣∣∣∣
F��kF 0

0 Fc��Fc

∣∣∣∣∣= |F��kF‖Fc��Fc|: (A.34)

It follows that

p(s; �|!k)

=
e
− 1

2

[ s−F��k
�−Fc

�
�

]�[ (F��kF)
−1 0

0 (Fc��Fc)−1

][ s−F��k
�−Fc

�
�

]

(2�)
n
2

∣∣∣∣∣ F
��kF 0

0 Fc��Fc

∣∣∣∣∣
1
2

=
e−

1
2 (s−F��k )�(F��kF)−1(s−F��k )e−

1
2 (�−Fc��)�(Fc��Fc)−1(�−Fc��)

(2�)
d
2 |F��kF|

1
2 (2�)

(n−d)
2 |Fc��Fc| 12

=p(s|!k)p(�): (A.35)

This implies that

p(s; �) =
∑
k

p(s; �|!k)p(!k)

=
∑
k

p(s|!k)p(!k)p(�)

= p(s)p(�) (A.36)

i.e. the source and noise vectors are independent, and, 2nally,

p(!k |s; �) = p(s; �|!k)p(!k)
p(s; �)

=
p(s|!k)p(�)p(!k)

p(s)p(�)

=
p(s|!k)p(!k)

p(s)
= p(!k |s): (A.37)

A.6. Proof of Lemma 4

First, we show that for any n×m;m6 nmatrix A, it holds

J(X)¿J(A�X); (A.38)

i.e. there is no projection of the observation vector that has
larger negentropy than the observation vector itself.

The negentropy is invariant under a non singular linear
transformation [26] and thus

J(X) =J(Ã�X) (A.39)

and inequality (A.38) becomes

J(Ã�X)¿J(A�X): (A.40)

Next, by rewriting both negentropies in terms of entropies
and gaussian entropies, we obtain

Hg(Ã
�X)−H(Ã�X)¿Hg(A

�X)−H(A�X) (A.41)

or, by re-arranging the terms,

Hg(Ã
�X)−Hg(A

�X)¿H(Ã�X)−H(A�X): (A.42)

Thus, to prove Eq. (A.38) it su3ces to prove Eq. (A.42).
Now, both the left- and the right-hand side of the inequal-

ity can be rewritten in simple forms. Beginning with the
right-hand side and using the conditional entropy de2nition
[25, p. 230],

H(Ã�X)−H(A�X) =H(A�X;Ac�X)−H(A�X)

=H(Ac�X|A�X) (A.43)

i.e. the di0erence of entropies equals the conditional entropy
of the complementary vector given the vector.

The same arguments hold for gaussian random variables,
and thus

Hg(Ã
�X)−Hg(A

�X) =Hg(A
c�X|A�X): (A.44)

Introducing Eqs. (A.43) and (A.44) in inequality (A.42),
yields 2nally

Hg(A
c�X|A�X)¿H(Ac�X|A�X) (A.45)
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or

J(Ac�X|A�X)¿ 0: (A.46)

Since negentropy is always non negative, Eq. (A.46) holds
always, and thus Eq. (A.38) holds.

We will show now that Eq. (A.38), and thus Eq. (A.42)
holds with equality when A = F, i.e. when A�X = S.
To facilitate the proof, single linearly transforming a vari-

able does not change its negentropy [26], we may assume
without loss of generality that F̃�X, and thus F�X and Fc�X,
are sphered, i.e. their covariance matrix equals the unity ma-
trix. The sphering process has been discussed in the proof of
Proposition 3 (Appendix A.4). In this case, as in Eq. (A.23),

|F̃��F̃|= |F̃�F̃|= |F�F| |Fc�Fc| (A.47)

and, the left-hand side of Eq. (A.42) becomes

Hg(F̃
�X)−Hg(F

�X)

=
1
2
log[(2�e)n|F̃�F̃|]− 1

2
log[(2�e)m|F�F|]

=
1
2
log[(2�e)n−m|Fc�Fc|]

=Hg(F
c�X) =H(Fc�X) =H(Z); (A.48)

where the last step follows by the KAH assumption that
the distribution in the noise subspace is gaussian, and thus
the gaussian entropy equals the entropy. Moreover, by Eq.
(A.36), the noise subspace on the KAH model is indepen-
dent of the source subspace, which leads to [25, p. 230]

H(Fc�X|F�X) =H(Fc�X) =H(Z): (A.49)

Thus, the right-hand side of Eq. (A.42) becomes

H(F̃�X)−H(F�X) =H(Z): (A.50)

Introducing Eqs. (A.48) and (A.50) in Eq. (A.42), we see
that the relation holds with equality, and thus

J(X) =J(F�X) =J(S) (A.51)

which, together with Eq. (A.38) proves that the negentropy
is maximum in the source subspace.
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