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Abstract

In the antisaccade paradigm subjects are instructed to perform eye movements in the opposite direction from the location of a visually appearing
stimulus while they are fixating on a central stimulus. A recent study investigated saccade reaction times (SRTs) and percentages of erroneous
prosaccades (towards the peripheral stimulus) of 2006 young men performing visually guided antisaccades. A unimodal distribution of SRTs
(ranging from 80 to 600 ms) as well as an overall 25% of erroneous prosaccade responses was reported in that large sample. In this article, we
present a neural model of saccade initiation based on competitive integration of planned and reactive saccade decision signals in the intermediate
layer of the superior colliculus. In the model the decision processes grow nonlinearly towards a preset criterion level and when they cross it, a
movement is initiated. The resultant model reproduced the unimodal distributions of SRTs for correct antisaccades and erroneous prosaccades as
well as the variability of SRTs and the percentage of erroneous prosaccade responses.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A paradigm often used to investigate decision processes
is the antisaccade paradigm (Hallett, 1978), a reaction time
task in which the subjects are instructed to perform eye
movements in the opposite direction from the location of a
stimulus that appears in their right or left peripheral visual
field while they are fixating on a central stimulus. Antisaccade
reaction times (aSRTs) are longer than would be expected by
considering synaptic delays and nerve conduction (Hanes &
Schall, 1996) and vary randomly from trial to trial (Everling
& Fischer, 1998). The distribution of aSRTs is unimodal
and the percentage of erroneous prosaccades towards the
peripheral stimulus has been observed to be 25% (Evdokimidis
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et al., 2002; Smyrnis, Evdokimidis, Stefanis, Constantinidis, &
Avramopoulos, 2002).

The slowness and variability of response time (RT) observed
in visuomotor tasks has been explained by decision processes
involving stochastic accumulation of information (Carpenter
& Williams, 1995; Hanes & Schall, 1996; Luce, 1986;
McClelland, 1979; Ratcliff, van Zandt, & McKoon, 1999;
Reddi & Carpenter, 2000; Usher & McClelland, 2001). In
the LATER model (Carpenter & Williams, 1995; Reddi &
Carpenter, 2000), a decision signal rises linearly from an
initial level in response to incoming information about a
stimulus, with its rate varying randomly from trial to trial,
until it reaches a fixed criterion or threshold level, at which
point a response is initiated (Reddi, Asrress, & Carpenter,
2003). Although the model accurately predicts the latencies
of saccades in various simple reaction experimental paradigms
(step and countermanding paradigms) as well as the shapes
of the distributions (Asrress & Carpenter, 2001; Carpenter &
Williams, 1995; Leach & Carpenter, 2001; Reddi et al., 2003;
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Reddi & Carpenter, 2000), it is unable to predict the error rate in
these paradigms. Moreover, the predicting power of the LATER
model fails when the model is applied to choice reaction
paradigms (e.g. antisaccade task) (see discussion section for
details).

The present modelling work addresses some of the
limitations of the previous models. It extends an already
established leaky competitive neural model of visually
guided eye movements in the presence/absence of distractors
(Trappenberg, Dorris, Munoz, & Klein, 2001) the inputs of
which are modelled as decision signals with linearly rising and
randomly varying from trial to trial rates as in the LATER
model (Carpenter & Williams, 1995; Reddi & Carpenter, 2000)
to explain the variability of response times and the percentage
of erroneous responses in the antisaccade task (Smyrnis
et al., 2002). The model explains how reactive (erroneous
prosaccades) and planned saccades (antisaccades) compete
against each other in the intermediate layers of the superior
colliculus (SC) and how a decision is formed and executed.
The neural circuitry that supports this process simulates
successfully responses of buildup neurons (Moschovakis &
Karabelas, 1985; Munoz & Wurtz, 1995a, 1995b) and burst
neurons of the intermediate layers of the SC (Moschovakis,
Karabelas, & Highstein, 1988; Munoz & Wurtz, 1995a, 1995b;
Waitzman, Ma, Oprican, & Wurtz, 1991) in the antisaccade task
(Everling, Dorris, & Munoz, 1998). Also, the model provides
a functional rationale of how buildup cells in these SC layers
process decision signals from converging unimodal pathways
and how these converging decision signals compete against
each other to yield an error and/or a correct eye movement in
the form of a phasic response from the burst neurons. Finally,
the model suggests why the response times in the antisaccade
task are so long and variable and predicts accurately the shapes
of correct and error RT distributions as well as their response
probabilities.

2. Materials and methods

2.1. General description

An earlier version of the neural model that will be presented
in this section was first reported in Cutsuridis, Evdokimidis,
Kahramanoglou, Perantonis, and Smyrnis (2003). In the
current and more comprehensive model, the preparation of an
antisaccadic eye movement consists of two independent and
spatially separated decision signals representing the reactive
and planned saccade plans. A movement is initiated when these
decision signals, represented by the neuronal activity of SC
buildup neurons with nonlinear growth rates varying randomly
from a normal distribution, gradually build up their activity
until reaching a preset criterion level. The crossing of the preset
criterion level (Durstewitz, 2003, 2004; Grammont & Riehle,
1999; Matell, Mech, & Nicolelis, 2003; McEchron, Tsend, &
Disterhoft, 2003; Roux, Coulmance, & Riehle, 2003; Schultz,
Dayan, & Montague, 1997) in turn releases the “brake” from
the SC burst neurons and allows them to discharge resulting in
the initiation of an eye movement. One of the key assumptions
of the model is that in the superior colliculus, the two decision
processes are integrated at opposite colliculi locations and
they compete with each other via lateral excitation and remote
inhibition (Behan & Kime, 1996; Meredith & Ramoa, 1998;
Moschovakis et al., 1988; Munoz & Istvan, 1998; Olivier,
Dorris, & Munoz, 1999). The growth rate in one decision
process slows down when the other decision process is active
at the same time.

The neural model proposes that (1) the competition between
the SC buildup neurons encoding the decision signals and
the randomly varying nonlinear growth rates of the decision
processes are the underlying neural mechanisms needed to
explain why the aSRTs are so long, (2) the randomly varying
nonlinear growth rates of the decision processes generate
accurately the correct and error latencies as well as the shape
of the distributions seen in the antisaccade task (Evdokimidis
et al., 2002; Smyrnis et al., 2002), and (3) the interplay between
the criterion level and the randomly varying growth rates of the
decision processes can successfully simulate the error rates in
the antisaccade task.

2.2. Mathematical formalism

The neural model is a leaky competitive integrator (Amari,
1997; Arai, Keller & Edelman, 1994; Grossberg, 1973; Kopecz,
1995; Kopecz & Schoner, 1995; Taylor, 1999; Trappenberg
et al., 2001) of the intermediate layer of the superior colliculus.
The neural architecture of the model is described in Fig. 1. Self-
excitation and lateral inhibition is assumed between all neurons
in both superior colliculi (see Eq. (1)).

Neurons in the model are represented as simple nodes.
The central node represents a fixation neuron (black), whereas
the peripheral nodes alternatively represent buildup (grey) and
burst (white filled) neurons of the right and left superior
colliculus. For the sake of simplicity, all three types of neurons
lie in the same layer, although experimental (Munoz & Wurtz,
1993, 1995a, 1995b) and computational (Arai et al., 1994;
Grossberg, Roberts, Aguilar, & Bullock, 1997) studies have
shown that fixation and buildup neurons lie in the same layer
of the rostral and caudal pole of the SC respectively, whereas
burst neurons lie in a separate layer from the previous two.

Although some of the equations (Eqs. (1)–(3)) presented in
this section have been developed before (Trappenberg et al.,
2001), new equations are also introduced (Eqs. (4)–(6)). In
order to improve the readability of this section, we list in this
section all the equations (new and old) of the model.

The internal state xi (t) of the node with index i is governed
by

τ
dxi (t)

dt
= −xi (t) +

∑
j

wi j A j (t) + Ip(t) + Ir (t) − uo + In

(1)

where τ is a time constant, wi j is the synaptic efficacy from
node i to node j , A j is the activity function of node j , Ir and
Ip are the reactive and planned inputs that the SC receives from
other cortical areas, uo is a global inhibition term, and In is the
background noise. The value of uo is set to zero for the buildup
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Fig. 1. Model architecture of the intermediate layer of the superior colliculus with fixation cells (black), buildup cells (gray), and burst cells (white). On-centre
off-surround connectivity is assumed between all neurons in both superior colliculi (not shown, but see Eq. (1) of Materials and Methods section). Lateral inhibitory
interactions between cells mediate the inhibitory effects of inhibitory interneurons (not explicitly modeled in the model) in the superior colliculus. Vertical solid
line indicates that both right and left superior colliculli consist of a fixation neuron shown in figure as a single fused fixation cell (black). The inputs to this layer are
classified as reactive and planned. Their time course is shown schematically corresponding to an onset and offset. Both inputs have a Gaussian spatial distribution
(not shown).
nodes, whereas for the burst nodes is set to a large value, since
burst neurons are shown to have discharge activity only after
the activity of the buildup neurons reaches a certain threshold
(Munoz & Wurtz, 1995a). The activity of the burst neurons
is restored back to zero only when they surpass an activity
level equal to 80% of their theoretical maximum discharge rate
(Trappenberg et al., 2001).

The activity function A j (t) of a node j representing the
average membrane potential is given by a sigmoid function

Ai (t) =
1

1 + exp(−βui (t) + θ)
(2)

where β is the steepness and θ is the offset of sigmoid
(Trappenberg et al., 2001).

The interaction matrix w, which allows for lateral
interactions between nodes in the same colliculus and between
nodes located in opposite colliculi sites (Meredith & Ramoa,
1998; Moschovakis et al., 1988; Munoz & Istvan, 1998),
depends only on the spatial distance between nodes and it is
positive for all nodes that excite themselves and negative for
nodes that are apart from each other (Trappenberg et al., 2001)

wi j = a exp
(

−( j − i)2

2 · σ 2
a

)
− b exp

(
−( j − i)2

2 · σ 2
b

)
− c (3)

where a, b and c are free parameters and σ a and σ b are spatial
parameters.

Two competing input signals are integrated in the SC: a
planned and a reactive. In the model, the origins of these two
input signals differ: the reactive signal is thought to originate
from the posterior cortical centres (Munoz & Everling, 2004),
and the planned signal from the frontal executive centres of the
brain (Munoz & Everling, 2004).
The reactive input signal is governed by a simple differential
equation

dIr

dt
= A· | sloper |, if t ≥ ton + tdelay

r and Ir ≤ I max
r

dIr

dt
= −αr A · Ir , if t ≥ ton + tdelay

r and Ir > I max
r

dIr

dt
= −αr A · Ir , if t < ton + tdelay

r

(4)

where αr are the integration strengths, Ir,max is a theoretical
maximum allowed activity for the reactive input, A is the
strength of the rising phase and sloper is the slope of the linear
rising phase of the reactive input. The reactive input reflects
the sensory information reaching the SC without extensive
information processing and it is taken to follow closely the
onset of a visual stimulus in the periphery with a delay tr,delay.

The planned input signal has also a linear rising phase before
it reaches its theoretical maximum value and it is governed by

Ip = A · |slopep · t |, if ton + tdelay
p ≤ t ≤ toff + tdelay

p

and Ip < I max
p

Ip = A · I max
p , if ton + tdelay

p ≤ t ≤ toff + tdelay
p

and Ip ≥ I max
p

Ip = 0, else

(5)

where Ip,max is the theoretical maximum activity of the planned
input, A is the strength of the planned input and |slopep| is
the absolute value of the slope of the planned input rising
phase. The planned input reflects the processing of the planned
antisaccade by higher processing centres such as the frontal
eye fields (FEF), the supplementary eye fields (SEF), and
the dorsolateral prefrontal cortex (DLPFC) to determine the
behaviour response that would be appropriate for the given task
instruction and it is considered to take longer (tdelay

p > tdelay
r )

for processing than the reactive input due to additional cortical
processing.
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The strength of both planned and reactive signals is given by

A = exp

(
−(i − j)2

2σ 2
A

)
(6)

where i and j are the indices of nodes and σA is the
standard deviation of the Gaussian. The width of the Gaussian
was derived from the shape of movement fields of saccade-
related neurons in the monkey SC (Munoz & Wurtz, 1995b;
Trappenberg et al., 2001).

In the model, the initial phases of both the reactive and the
planned inputs were modelled with an initial linearly rising
phase (Hanes & Schall, 1996; Reddi & Carpenter, 2000) until
they both reached their corresponding theoretical maximum
value. The slope of each input varied randomly from a normal
distribution with mean (µ) and standard deviation (σ ) and with
a different rate for each run (trial) (the process by which the
mean and standard deviation were determined is explained in
the Results section) and it was generated using MATLAB’s
normrnd routine. The remaining phases of the temporal profiles
of the two inputs followed the Kopecz (1995) observations.

The afferent delays, tdelay , of the reactive and planned inputs
were chosen so that the simulations resemble the cell data of
macaque monkeys (Dorris, Pare, & Munoz, 1997). The latency
of the reactive response was set at 70 ms (Dorris et al., 1997),
whereas the latency for the higher cortical response was set at
120 ms (Trappenberg et al., 2001). The 50 ms difference in
these latencies was reported by Becker (1989) and it has been
explained as an additional cortical processing of the planned
signal before it reaches the superior colliculus. Saccade reaction
times (SRTs) were estimated to be the time interval from the
onset of peripheral stimulus till the time the activity of the
burst neurons deviated from zero plus 20 ms (approximate
time required for burst neuron signal to reach the eye muscles)
(Sparks, 1978).

Finally, to simulate the random fluctuations in the
waveforms derived from the cell recordings, a normally
distributed random variable, In = αn N (0, 1) with strength αn
is introduced in Eq. (1).

2.3. Implementation

The simulations were performed on a Pentium IV 3 GHz
PC with MATLAB’s version R13 installed. The whole system
of differential and algebraic equations was implemented in
MATLAB (The MathWorks, Inc, Natick, MA). Differential
equations were integrated numerically using MATLAB’s
ordinary differential equation solver, ode45 (an implicit solver
based on the Dormand–Prince pair method (Dormand & Prince,
1980). The relative (error) tolerance was set to 10−4.

2.4. Experimental data

The psychophysical data used in this study were collected in
another study (Evdokimidis et al., 2002; Smyrnis et al., 2002).
Details of the experimental procedure used for the collection
of these data are described therein (Evdokimidis et al., 2002;
Smyrnis et al., 2002). Briefly, 2006 conscripts of the Greek
Fig. 2. Top. Composite simulated discharge activities of fixation, buildup
(encoding reactive and planned saccade plans) and burst (generating erroneous
and correct antisaccades) cells in the visually-guided (step) antisaccade task.
Horizontal solid line depicts the threshold level. Time units are in ms.

Air Force (age 18–25) performed 90 trials of the antisaccade
task. Each trial started with the appearance of a central fixation
stimulus. After a variable period of 1–2 s, the central stimulus
was extinguished and a peripheral stimulus appeared randomly
at one of nine distances (2◦–10◦ at 1◦ intervals) either to left or
to the right of the central fixation stimulus. The subjects were
instructed to make an eye movement to the opposite direction
from that of the peripheral stimulus as quickly as possible.
No accuracy constraints were applied. The correct or error
saccade reaction time (SRT) was measured in each trial for
every subject. Saccade reaction time was defined as the time
taken from the first appearance of the peripheral stimulus ‘till
the first detectable eye movement. Trials with reaction times
<80 ms were excluded as anticipations and trials with reaction
times >600 ms were excluded as no response trials.

In this behavioural setting (Evdokimidis et al., 2002;
Smyrnis et al., 2002) only three eye movement behaviours were
observed: (1) the subject makes an antisaccade, (2) the subject
makes an error prosaccade only (very rare), (3) the subject
makes an error prosaccade followed by a correct antisaccade.
However, at no time during the antisaccade task was it ever
observed for a subject to make a correct antisaccade followed
by an error prosaccade in the same trial.

2.5. Clustering analysis

Ratcliff (1979) presented a method for obtaining group
reaction time distributions from experiments in which there
were as few as 10 observations per subject cell. His method
essentially involved estimating latency quartiles for each
subject and then averaging these over the group of subjects.
Ratcliff (1979) showed that the parameters derived from the
group distributions were the same as the parameters used
to generate the individual pseudo-subject distributions and
that group distributions provide an excellent summary of
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Table 1
Range of model parameters

Parameters Description Values

N Number of nodes in the model 101
β Steepness of activation function 0.07
θ Offset of activation function 0
τ Time constant 15
a Free parameter 144
b Free parameter 48
c Free parameter 16
σa Free parameter 0.6 mm
σb Free parameter 1.8 mm
an Strength of noise input 20
Ip,max Maximum value for planned input 600 spikes/s
Ir,max Maximum value for reactive input 500 spikes/s
tp,delay Delay time for planned input reflecting extra time required for cortical processing 120 ms
tr,delay Delay time for reactive input reflecting extra time required for cortical processing 70 ms
ton Time value, where inputs are turned on 120 ms (endo)

70 ms (exo)
toff Time value, where inputs are turned off 600 ms
σA Standard deviation of Gaussian distribution function used for the rising phases of reactive and planned inputs 1.5
ar Decay term of reactive input
µ1 Mean of normal distribution from which the slope of planned input takes values Variable (see Table 2)
σ1 Standard deviation of normal distribution from which the slope of planned input takes values Variable (see Table 2)
µ2 Mean of normal distribution from which the slope of reactive input takes values Variable (see Table 2)
σ2 Standard deviation of normal distribution from which the slope of reactive input takes values Variable (see Table 2)
uo Global inhibition 0 (buildup nodes)

100 (burst nodes)
distributional information for the group and don’t introduce any
systematic bias into the estimate of shape.

In our study, the median RT and the inter-quartile range for
antisaccades and error prosaccades of all 2006 conscripts were
grouped into ten groups after performing clustering analysis
using the STATISTICA software version 5.5 (StatSoft, Inc,
Tulsa, OK). The purpose of the cluster analysis was to partition
the observations into groups (“clusters”) so that the pairwise
dissimilarities between those assigned to the same cluster tend
to be smaller than those in a different cluster. We arbitrary
chose ten clusters because we wanted each cluster to have
a sufficiently large number of individuals (ranging from 30
individuals to 240 individuals in each cluster).

3. Results

The first part of this section examines the activities of
fixation, burst and buildup neurons in the antisaccade task. The
second part examines the shapes of the antisaccade and error
prosaccade SRT distributions and the antisaccade response
probabilities for all individuals on the average. The third part
discusses the shapes of the antisaccade and error prosaccade
SRTs and the antisaccade response probabilities for ten groups
of individuals and how they compare with the experimental
ones.

3.1. Burst and buildup cell simulations

The simulations of the time course of fixation, burst and
buildup cell activities in the antisaccade task are summarized
in Fig. 2. The values of the parameters used in this simulation
are depicted in Table 1. All simulation results reported in this
paper were produced with N = 101 nodes, 50 buildup, 50 burst,
and one fixation. The spatial arrangement of the nodes can be
seen in Fig. 1.

Fig. 2 shows composite simulated discharge activities of
fixation, buildup and burst neurons from a simulation run of
the antisaccade task. In this particular run, the threshold level
(horizontal line at about 400 Hz) was carefully adjusted, so that
both buildup nodes encoding the reactive and planned inputs
crossed the threshold and an erroneous prosaccade (error burst)
was initiated followed by a correct saccade (correct burst).
In the beginning of each simulation run, the planned input,
reflecting the decision of each subject to fixate on the central
stimulus, is presented to the fixation node. During the fixation
period, only the fixation node is allowed to have tonic activity
that lasts for the entire fixation period (Munoz & Wurtz, 1993).
In contrast with the gap antisaccade task, in this antisaccade
task the fixation tonic activity prevents the buildup nodes from
having any preparatory activity (Dorris et al., 1997; Everling
et al., 1998). In the antisaccade experimental task described
earlier, when the peripheral stimulus appears either on the left
or right side of the subject’s visual field, then the subject has
to make an eye movement to the opposite direction of the
visually presented stimulus. In the model, the appearance of
the peripheral stimulus causes the fixation node’s activity to
start decaying, while the buildup nodes’ activities start to rise.
The activity of the fixation node reaches zero slightly before
the burst neuron activity starts to grow. Once the activities
of the buildup nodes reach a preset threshold value (80% of
their theoretical maximum activity (see Table 2) (Durstewitz,
2003, 2004; Grammont & Riehle, 1999; Matell et al., 2003;
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Fig. 3. (a) Burst cell response (reproduced with permission from Everling et al. (1999)) and (b) buildup cell response (reproduced with permission from Everling
et al. (1999)) compared with qualitative simulations of a (c) burst and (d) buildup cell responses in a visually guided antisaccade paradigm. a–d, All plots are aligned
to the onset of the saccade. The graphs show cell activity as it changes over time. Note that a saccade is initiated before both buildup and burst cell activities reach
their peak values.
McEchron et al., 2003; Roux et al., 2003; Schultz et al.,
1997; Trappenberg et al., 2001), the inhibition is removed
from the burst neurons allowing them to discharge with high
frequency (Munoz & Wurtz, 1995a, 1995b). The onset of
the burst activity reflects the onset of the saccade movement,
exactly as it observed in experimental studies (Munoz & Wurtz,
1995a, 1995b). Once the activity of the burst neurons reaches
80% of their theoretical peak value (see Table 1), instant
reestablishment of inhibition is applied to the burst neurons
and their activity returns to zero (Trappenberg et al., 2001).
When the burst activities reach zero, the activities of the buildup
neurons start decaying (Munoz & Wurtz, 1995a, 1995b) and the
saccade-related pause of fixation cell discharge is lift off and
the fixation node activity starts to grow again (Munoz & Wurtz,
1993).

In each simulation run, the reactive and planned inputs are
delivered to buildup nodes located on opposite collicular sites.
So, when the peripheral stimulus appears on the right side of
the visual field and the subject needs to make an eye movement
to the left side, then the primary buildup node contralateral
to the peripheral stimulus encodes the reactive input (error
decision), whereas the primary buildup node ipsilateral to
the peripheral stimulus encodes the planned input (correct
decision), and vice versa. To simulate such behaviour in our
model, a random node to right of the central stimulus and a
random node to the left of the central stimulus are chosen
in each trial. Then, randomly the right or the left hemifield
is chosen and subsequently the previously randomly selected
node in the contralateral hemifield is marked as the peripheral
stimulus site. That node and its nearest neighbours are then
chosen to integrate the reactive input, whereas the previously
ipsilateral randomly selected node and its nearest neighbours
are chosen to integrate the voluntary input. The reactive input
is delivered to buildup nodes with a time delay of 70 ms after
stimulus presentation, whereas the planned input is delivered
to buildup nodes with a time delay of 120 ms after stimulus
presentation. The 50 ms delay between the two inputs matched
the experimental observations of Becker (1992). The strengths
of both inputs have a Gaussian spatial shape, so that when the
input is centred at node i , its neighbouring nodes received a
percentage of that input that decreased as the spatial distance
from the central node increased. For example, if the buildup
node number 13 on the ipsilateral to the peripheral stimulus SC
received the planned input, then its neighbouring buildup nodes
11 and 15 received a proportion α smaller than the maximum
strength of the planned input and nodes 9 and 17 received a
proportion β (β < α, β � max) of the maximum strength of
the planned input. Similarly, for the buildup nodes that received
the reactive input. The width of the Gaussian is derived from
the shape of movement fields of saccade-related neurons in the
monkey SC (Munoz & Wurtz, 1995b). The buildup nodes on
remotely opposite colliculi sites are then allowed to compete
with each other until their activities reached and crossed a fixed
threshold level, which caused the ‘brake’ from the burst nodes
to be removed and an eye movement to be initiated.

Fig. 3 shows experimentally recorded burst and buildup cell
responses (Everling et al., 1998) compared with qualitative
simulations of burst and buildup cell responses in a visually
guided antisaccade paradigm. The activities of both simulated
and experimental activities are aligned to the onset of an
antisaccade eye movement. Briefly, Everling et al. (1998)
trained monkeys on a pro/anti-saccade paradigm in which they
either had to generate a saccade toward the visual stimulus or an
antisaccade away from the visual stimulus to its mirror position
depending on the colour of the initial fixation point, while
they recorded from the monkeys’ superior colliculus (SC), in
order to determine whether the SC is involved in the generation
of antisaccades. Everling and colleagues study (1998) showed
that the antisaccade task involves the attenuation of preparatory
and stimulus-related activity in the SC to avoid unwanted
prosaccades. The model is able to qualitatively simulate the
activities of the burst and buildup neurons (Fig. 3c, d).
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Fig. 4. Plots of correct percent density distribution (y-axis) vs number of categories (x-axis) for all 2006 subjects. Dashed lines: simulated correct percent density
distribution plot. Solid lines: experimental correct percentage density distribution plot.
3.2. Comparison with behavioural data using the average data
for all subjects

We estimated the median reaction times, the shapes of
the RT distributions of the correct antisaccades and error
prosaccades as well as the response probabilities for all 2006
individuals on the average by allowing the model to run for
1200 trials. In each trial, the slope of the reactive input took
values from a normal distribution with mean (µ1) and standard
deviation (σ1), whereas the slope of the planned input took
values from another normal distribution with mean (µ2) and
standard deviation (σ2). The mean values of the two normal
distributions were chosen by a trial-and-error process. Initially,
the model was allowed to run for single trials, where the
slopes of both the reactive and planned inputs were carefully
adjusted, so that the model could give correct antisaccade
and error prosaccade reaction times that closely resembled
the experimental ones (for experimental values see inside
parentheses of last row in Table 2. These slope values were then
used as mean values for the two normal distributions. Standard
deviation values σ1 and σ2 were approximated so that most of
the produced correct antisaccade and error prosaccade reaction
times were greater than 80 ms and less than 600 ms. Then,
MATLAB’s normrnd routine was used to generate random
slope values for each of two distributions equal to the total
number of trials (1200 in this case).

The threshold was set to 80% of the maximum activity of
the buildup neurons (Durstewitz, 2003, 2004; Grammont &
Riehle, 1999; Matell et al., 2003; McEchron et al., 2003; Roux
et al., 2003; Schultz et al., 1997; Trappenberg et al., 2001); see
Table 1. Trials with response times less than 80 ms and greater
than 600 ms were excluded. Saccade reaction time (SRT) was
estimated as the time taken from the first appearance of the
peripheral stimulus ‘till the time burst node activity started to
deviate from zero. An additional 20 ms efferent delay was also
added, which it was a typical value found in recording and
stimulation studies (Munoz & Wurtz, 1995a; Sparks, 1978). All
three experimentally observed eye movement behaviours (see
Experimental data) were produced by our model. The model
at no time was able to produce a correct antisaccade followed
by an error prosaccade, exactly as it is observed in antisaccade
tasks (Evdokimidis et al., 2002; Smyrnis et al., 2002). The
model clearly demonstrated that there is no need of a top-
down inhibitory signal which will prevent the expression of the
correct antisaccade when the error prosaccade is expressed first.
The median antisaccade and error prosaccade response times
and the error rate for the simulated data and the corresponding
values derived from all 2006 individuals are displayed in
Table 2 (last row). It can be seen that the average response times
and error rate simulated values approximate the experimental
ones.

We compared the SRT distributions of the real experimental
data with the simulated SRT distributions for all 2006 subjects
by normalizing the experimental and simulated correct and
error SRT distributions. More specifically, the time interval
between the 80 and 600 ms was divided into twenty-six
categories, each lasting 20 ms (e.g. category 1 was between
80 and 100 ms, category 2 between 100 and 120 ms,
and so forth). For each category we calculated its percent
relative frequency of response times. Plots of the simulated
and experimental correct antisaccade and error prosaccade %
density distributions of response times for all 2006 subjects are
depicted in Fig. 4. The mean frequency was then calculated.
The discrepancy in each category between the simulated and
experimental correct and error distributions was measured
by the squared difference between the observed (simulated)
and the expected (experimental) frequencies divided by the
expected frequency ((Observed − Expected)2/Expected). The
χ2 value was the sum of these quantities for all categories.
The rejection region was set at χ2

≥ χ2
0.05. The χ2 test

of homogeneity tested the null hypothesis of whether the
simulated and experimental normalized distributions of SRTs
for antisaccades and error prosaccades differ between them. No
significant difference was shown (see last row of Table 3).
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Table 2
Mean and standard deviation of slopes of planned and reactive inputs and simulated correct median, error median, and error rate for average and all ten groups

µ1 σ1 µ2 σ2 Threshold Median RT of antisaccades Median RT of error prosaccades Percent antisaccade error rate

Group1 4.0 1.0 3.6 0.9 416 294.174 (288.16) 279.541(265.20) 13.04 (16.15)
Group 2 3.6 1.0 5.3 1.5 392 276.50 (279.21) 202.97 (201.96) 38.62 (39.07)
Group 3 3.5 0.9 5.5 1.6 400 281.89 (280.91) 212.54 (201.92) 20.15 (23.73)
Group 4 4.9 1.3 5.8 1.5 400 251.30 (249.27) 209.90 (211.65) 12.41 (12.02)
Group 5 4.7 1.8 5.0 1.3 408 254.80 (242.40) 212.99 (216.66) 24.27 (17.02)
Group 6 3.4 0.8 6.8 1.8 384 282.38 (288.44) 188.10 (193.66) 23.93 (28.86)
Group 7 3.9 0.9 7.5 2.0 376 263.10 (251.79) 180.63 (175.53) 20.87 (24.79)
Group 8 2.1 0.5 4.6 1.3 406 365.69 (349.42) 218.99 (221.36) 37.00 (34.58)
Group 9 7.3 2.3 7.5 2.1 367 218.20 (213.58) 177.85 (172.77) 27.36 (24.92)
Group 10 2.8 0.9 2.4 0.6 432 327.56 (307.5) 331.07 (326.99) 20.05 (21.81)
All subjects 3.7 0.8 5.9 1.6 493 274.75 (275.07) 198.61 (200.67) 21.53 (24.3)

Units: correct SRT (ms), error SRT (ms). Values in parentheses stand for experimental values.
Table 3
Values of χ2 test of homogeneity between correct and error experimental
and simulated percentage density distributions for antisaccades and error
prosaccades

Antisaccades Error prosaccades

Group 1 36.15 34.92
Group 2 90.5∗ 33.56
Group 3 32.16 32.89
Group 4 56.06∗ 96.24∗

Group 5 35.21 24.18
Group 6 31.82 27.97
Group 7 30.34 21.82
Group 8 36.46 35.67
Group 9 36.99 23.15
Group 10 33.88 83.57∗

All subjects 37.52 34.19

χ2 values marked with an asterisk indicate a significant difference between
the simulated and the observed RT distributions. Rejection region: χ2

≥

χ2
0.05(37.65). The degrees of freedom were 25.

3.3. Comparison with behavioral data for the 10 groups of
subjects

Once again the reactive and the planned inputs were
modelled with an initial linearly rising phase. The slope of each
linearly rising phase of each input was varied randomly from
a normal distribution with mean (µ) and standard deviation
(σ ) and with a different rate for each run (trial) as it was
described in the previous section. MATLAB’s normrnd routine
was used once more to generate random slope values for each
of two distributions equal to the total number of trials for which
the model was chosen to run (see below). The threshold was
adjusted, so that the simulated error rate closely matched the
observed. Its value was set to a different value for each group,
but it was kept fixed across trials for each group.

The model was allowed to run for 1000 trials. Trials with
response times less than 80 ms and greater than 600 ms were
excluded. All three experimentally observed eye movement
behaviours (see Experimental data) were produced by our
model. All three behaviours were produced without the need
of a top down inhibitory signal as it often experimentally
postulated and theoretically hypothesized to exist (Munoz &
Everling, 2004). The median antisaccade and error prosaccade
RTs and the error rate for the simulated data for each group
and the corresponding values for the experimental groups are
displayed in Table 2. It can be seen that the simulated values
approximate the experimental ones in most cases.

In order for each group to compare the SRT distributions of
the real experimental data with the simulated SRT distributions,
we used the procedure described in the previous section. More
specifically, we normalized the SRT distribution of each subject
data and then added the normalized distributions for all subjects
belonging to the same group. For each category we calculated
its percentage relative frequency of response times. Plots of
the simulated and experimental correct antisaccade and error
prosaccade % density distributions of response times for all ten
groups are displayed in Figs. 5 and 6. The mean frequency for
all subjects in a group was then calculated. The discrepancy
in each category between the simulated and experimental
correct and error distributions was measured by the squared
difference between the observed (simulated) and the expected
(experimental) frequencies divided by the expected frequency
((Observed−Expected)2/Expected). The χ2 value was the sum
of these quantities for all categories. Once again, the rejection
region was set at χ2

≥ χ2
0.05. The χ2 test of homogeneity

showed a significant difference in two of the ten comparisons
for antisaccade RT distributions and two of the ten comparisons
for the error prosaccade RT distributions (see Table 3).

4. Discussion

4.1. General issues

One of the most universal ways to represent a decision
signal is with growth processes that gradually build up
their activity until reaching a fixed threshold activation level
(Mazurek, Roitman, Ditterich, & Shadlen, 2003; Mazurek &
Shadlen, 2002). A growth process may have many different
psychological and physiological interpretations. For example,
it is assumed that there is a steady flow of information
about which of the many movement instructions is presented,
providing support for a fixed accumulating rate (Carpenter &
Williams, 1995). A substantial body of experimental evidence
indicates that neurons in area MT represent the critical sensory
signals that monkeys use to base their judgement of random
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Fig. 5. Plots of correct percentage density distribution (y-axis) vs number of categories (x-axis) for all ten groups. Dashed lines: simulated correct percentage
density distribution plots for all ten groups. Solid lines: experimental correct percentage density distribution plots for all ten groups.
dot motion (Britten, 2003; Parker & Newsome, 1998). Other
neurophysiological data show that many neurons in the frontal
eye field (FEF) area related to saccadic eye movements can
be considered as accumulators building their activity before
movement starts. The primary function of these accumulators
is to make preparations for saccadic eye movements (Hanes &
Schall, 1996). Also, one third of the saccade-related cells in
the monkey SC begin to build up their activity after the signal
to make a saccadic eye movement is presented and continue
to discharge until the beginning of the movement (Munoz
& Wurtz, 1995a, 1995b). As the number of possible targets
decreases, the level of neuronal activity preceding the saccadic
eye movement also increases (Basso & Wurtz, 1998). These
buildup cells, which seem to be involved in the preparation,
rather than in execution of eye movement, are good candidates
for accumulators that implement the decision process about the
required movement parameters.

Our model which instantiates this idea of the decision in the
antisaccade task is based on the time integral of sensory-motor
evidence represented by neurons in the superior colliculus (SC)
area. The simulations described in this paper do not simply
test the idea, but also explore its implications. The model
provides insights into the neural mechanisms that underlie
integration of information and exposes important features of
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Fig. 6. Plots of error percent density distribution (y-axis) vs number of categories (x-axis) for all ten groups. Dashed lines: simulated error percentage density
distribution plots for all ten groups. Solid lines: experimental error percentage density distribution plots for all ten groups.
the data, furnishes novel interpretations, and makes predictions
that may motivate future experiments. In what follows, we
explain the rationale behind the assumptions taken in the model,
and explore the model’s predictions, limitations and future
extensions.

4.2. Model assumptions and predictions

The model presented herein offers an alternative view
for saccadic eye movement generation that is supported
by experimental evidence. The model isn’t concerned with
visuomotor transformations in the SC (Grossberg et al., 1997).
It is primarily concerned with what happens after the motor
commands are formed, how the two processes of reactive
saccadic suppression and voluntary response generation are
represented in the brain and how they are handicapped in the
antisaccade task.

In our model, we assumed that the rising phases of the
planned and reactive inputs were linear and that they took
values from two normal distributions with different means
and standard deviations. Such an assumption is consistent
with known neurophysiology of saccadic eye movements. In
the frontal eye fields of monkeys there are populations of
visuomotor neurons that begin to fire in advance of saccades,
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with their activity rising linearly upon presentation of a suitable
target stimulus (Hanes & Schall, 1996; Kim & Shadlen, 1999;
Schall & Hanes, 1998). Buildup neurons in the monkey SC
begin to linearly build up their activity after the signal to make
a saccade is presented (Everling et al., 1998; Munoz & Wurtz,
1995b). In all these studies, the rate of rise varies randomly
from trial to trial and the saccade is initiated when this activity
reaches a fixed threshold (Hanes & Schall, 1996; Reddi &
Carpenter, 2000).

In the model, a fixed 50 ms latency difference in the onsets
of the buildup neurons encoding the two inputs was further
assumed and supported by experimental evidence (Becker,
1989, 1992). Furthermore, the assumed origins of the two
inputs allowed for such a latency difference. The reactive signal
was thought to originate from the projection of the posterior
parietal cortical centers to the SC, whereas the planned signal
was thought to be the inverted saccade vector from the
projection of the posterior parietal cortical centres to the frontal
executive centres of the brain, which in turn projected to the SC
(Munoz & Everling, 2004).

Once the reactive and planned inputs were integrated in the
SC model, the activities of the buildup neurons encoding the
reactive and planned inputs were allowed, while competing
each other, to grow nonlinearly, until they reached a predefined
threshold level (80% of their theoretical maximum activities)
(Hanes & Schall, 1996; Reddi & Carpenter, 2000). At that
moment, the burst neurons began to fire at high frequencies,
whose responses were presumed to last for the duration of
the eye movement (Sparks, 2002). Similar behaviour has been
observed in experimental working memory, operant or trace
conditioning tasks, where the climbing activities of neurons
when exceeding some rather constant firing rate threshold
caused an abrupt increase or decrease in the firing rate
of cortical and subcortical postsynaptic neurons around the
expected time of occurrence of an event (Durstewitz, 2003;
Grammont & Riehle, 1999; Matell et al., 2003; McEchron et al.,
2003; Roux et al., 2003; Schultz et al., 1997).

The activity of the buildup neurons encoding the planned
input (antisaccade) was considered in all trials to be greater
than the fixed threshold and greater than the activity of the
buildup neurons encoding the reactive input (error prosaccade).
Behaviorally this meant that the antisaccade was always
expressed even when the error saccade was first expressed.
Although there is no neurophysiological evidence supporting
such an assumption, we consider it to be reasonable because
it reflected the instruction that each subject received in the
beginning of each task that they had to make a voluntary eye
movement to the opposite direction of the presented stimulus.
Such an assumption is further supported by behavioral evidence
(Evdokimidis et al., 2002; Smyrnis et al., 2002), which showed
that subjects were always able to correct an error prosaccade in
the antisaccade task.

Finally, a fixed threshold across all trials (Hanes &
Schall, 1996) in each virtual subject, but variable across all
virtual subjects reflecting inter-subject variability was assumed.
Experimental evidence supporting the fixed threshold level
assumption comes from recordings from the frontal eye fields
and the superior colliculus areas of monkeys (Everling, Dorris,
Klein, & Munoz, 1999; Everling et al., 1998; Hanes & Schall,
1996). Hanes and Schall (1996) observed that movements were
initiated if and only if the neural activity reached a specific
and constant threshold activation level. Stochastic variability
in the rate at which neural activity grew toward that threshold
resulted in the distribution of reaction times. In Everling et al.
(1999), the role of the primate superior colliculus in preparation
and execution of gap and overlap antisaccades and prosaccades
was investigated. The discharges of visual, buildup, burst and
fixation neurons in both conditions were measured and it was
observed that the responses of the buildup neurons in the
prosaccade task are greater than the responses of the buildup
neurons in the antisaccade task. Everling et al. (1999) tried to
explain this finding by suggesting the presence of two separate
threshold levels for each set of buildup neurons. We believe
that their finding could have been better explained, if they
have assumed in the antisaccade task that the reactive and
volitional signals are integrated into two different populations
of buildup neurons that are contralateral to each other, whereas
in the case of the prosaccade, the reactive and volitional
signals are integrated in the same set of neurons. This might
have been a reason of why the responses of neurons in the
prosaccade task are greater than the responses of neurons in
the antisaccade task. In another study, Everling et al. (1999)
reported that the responses of neurons encoding the erroneous
prosaccade are greater in magnitude than the responses of
neurons encoding the correct antisaccade in the gap antisaccade
task, indicating the presence of two separate threshold levels.
We believe that one reason for such a difference could be the
fact that anticipatory neuronal activity is present before the
target appearance in all gap saccade tasks. In the antisaccade
with no gap between offset of the central fixation and the
target appearance no such anticipatory activity is present. If
one compares the neuronal activity for erroneous and correct
antisaccade neurons after the target appearance in this no gap
condition (Fig. 3 in Everling et al., 1999) it can be seen that the
two activities are approximately equal.

Using the above experimentally verified assumptions in a
competitive model of the SC we offered a functional rationale
at the SC neuronal population level of why the antisaccadic
reaction times are so long and variable and simulated accurately
the correct antisaccade and error prosaccade latencies, the
shape of RT distributions with their characteristic skewness
towards the higher response times and the error probabilities
(see Figs. 4–6 and Tables 2 and 3). A χ2 test of homogeneity
of experimental and simulated SRT distributions showed that
only four out of 22 (11 correct antisaccade groups and 11
error prosaccade groups) groups show significant difference.
A closer look at those distributions shows that the left tail
of the theoretical distribution curves are not matching exactly
the left tail of the experimentally derived curves. This means
in terms of temporal values that the model can produce
SRTs as low as a maximum lower bound (approximately
120 ms). Hence, our model models very well the visually
guided regular antisaccade responses, but not the visually
guided express antisaccade responses. This finding is supported
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by experimental evidence (Fischer & Weber, 1992; Pare &
Munoz, 1996) showing that express saccades are produced
from different neurophysiological mechanisms than the regular
antisaccades.

The major prediction of our model is that there is no
need of a top-down inhibitory signal that prevents the error
prosaccade from being expressed, thus allowing the antisaccade
to be released. Our work suggests that the preparation of an
antisaccadic eye movement is the result of two competing
decision signals representing the reactive and planned saccades
arising from different cortical areas (Godijin & Theeuwes,
2002; Hunt, Bettina, von Muhlenen, & Kingstone, 2004;
Trappenberg et al., 2001), which are integrated at opposite
colliculi sites. An eye movement is initiated when these
decision signals which are represented by the activity of SC
buildup neurons with nonlinear growth rates varying from
trial to trial randomly from a normal distribution, gradually
buildup their activity until they reach a preset threshold level
(Carpenter, 2000; Hanes & Schall, 1996). The crossing of the
threshold level by the buildup neurons removes the “brake”
from the SC burst neurons and allows them to discharge and
hence an eye movement to be initiated (Munoz & Wurtz,
1995a, 1995b). This finding challenges the currently accepted
view of saccade generation in the antisaccade task, which
requires a top-down inhibitory signal to suppress the erroneous
prosaccade after the antisaccade has been expressed (Munoz
& Everling, 2004). In the neurophysiological studies of the
antisaccade task in primates (Funahashi, Chafee, & Goldman-
Rakic, 1993; Hikosaka, Takikawa, & Kawagoe, 2000; Hikosaka
& Wurtz, 1983; Munoz & Everling, 2004; Munoz & Fecteau,
2002; Shook, Schlag-Rey, & Schlag, 1990) such a top-down
inhibitory signal was never documented (for a review see
Munoz and Everling (2004)).

4.3. Comparison with other models

Our model introduces new ideas while incorporating and
extending ideas from previous models. The idea of a decision
process involving accumulation of information as a way
of modeling the variability in RT observed in behavioural
paradigms has been discussed before (Carpenter & Williams,
1995; Hanes & Schall, 1996; Luce, 1986; McClelland, 1979;
Ratcliff et al., 1999; Reddi & Carpenter, 2000; Usher &
McClelland, 2001). The Race/LATER model of Carpenter
and colleagues is the most successful representative of these
types of models. As it was previously mentioned, although the
Race/LATER model of Carpenter and colleagues (Carpenter &
Williams, 1995; Reddi & Carpenter, 2000) is very successful
at predicting SRTs and the shapes of their distributions in
simple reaction tasks (Asrress & Carpenter, 2001; Carpenter &
Williams, 1995; Leach & Carpenter, 2001; Reddi et al., 2003;
Reddi & Carpenter, 2000), its predicting power breaks down
when it is applied in choice reaction time tasks (e.g. antisaccade
task).

Let’s now try to apply the LATER model to the constraints
of the antisaccade task presented in our study and detailed in
Section 4.2. As was mentioned earlier, in the antisaccade task,
only three behaviours are observed: (1) the subject makes the
correct antisaccade, (2) the subject makes the error prosaccade
and (3) the subject makes first the error prosaccade and then
corrects with the antisaccade. Since there is no competition
between the two decision signals (erroneous prosaccade and
correct antisaccade) in the LATER model, then the signal that
first exceeds the threshold is the winner. This signal will also
be the cue for interrupting the model run and ending the trial.
We identify the following three scenarios: (1) the slope of
the error decision is larger than the slope of correct decision,
(2) the slope value of the correct decision is larger than the
slope of the error decision, and (3) the slope values of the two
decision signals are equal. In scenario 1, the error decision will
reach first the threshold and hence the subject will make the
error prosaccade. The trial will end without the correct decision
crossing the threshold. In scenario 2, the correct decision will
cross the threshold first and hence the subject will make the
correct antisaccade. The trial will end without the error decision
crossing the threshold. In scenario 3, where the slope values are
equal but the correct decision is delayed by 50 ms, the error
decision will reach the threshold first and hence the subject
once again will make the error prosaccade. It is clear from these
scenarios that the race model is capable of only capturing two of
the observed behaviours in the antisaccade task (i.e. behaviours
(1) and (2)).

In a slightly modified version of the Race/LATER model,
where the trial doesn’t end when one of the decision signals
exceeds the threshold value, but the trial continues when both
decision signals cross the threshold, all three experimentally
observed antisaccadic behaviours are observed in addition to
a new fourth behaviour, where the error prosaccade follows the
correct antisaccade. In this case it is obvious that an external
inhibitory signal will be needed to stop the error prosaccade
when the correct antisaccade is first expressed. The inhibitory
signal can be avoided if the variability of error decision slope
values is smaller than the variability of the correct decision
slope values, ensuring that the decision signals never cross
below the threshold. However, none of the above has ever been
observed experimentally.

In our model, the lateral competition, which has been
observed experimentally in the SC, between the two decision
signals ensures that neither the external inhibitory signal nor
the differences in slope variabilities of the two decision signals
are needed to reproduce all three observed behaviours of the
antisaccade task, if a 50 ms time delay between the two
inputs (verified experimentally), a Gaussian distribution in
input intensity (shown experimentally) and unequal maximal
intensities of the two inputs (Ip > Ir) are assumed. In
scenario 1, the error signal will exceed first the threshold
followed subsequently by (1) the correct signal or (2) no signal
depending on the slope value of the correct decision signal. For
instance, if the slope value of the correct signal is too small
(less than 1), then the correct signal will most likely not have
sufficient time to cross the threshold (remember SRTs >600 ms
were thrown away (see Experimental Data section)). From this
scenario, behaviours (2) and (3) are observed. In scenario 2,
and since the correct signal is always greater in strength than
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the error signal, only the correct antisaccade behaviour will be
observed, since through lateral inhibition more inhibition from
the correct antisaccade signal to the error prosaccade signal will
prevent the latter from reaching the threshold. In scenario 3,
the error prosaccade will be expressed first followed by the
correct antisaccade. So, our model with dynamic competition
and no external top-down inhibitory signal demonstrates all
three observed behaviour in the antisaccade task and ensures
that at no time we will observe the correct antisaccade been
expressed after the error prosaccade.

4.4. Model limitations and failures

A major limitation of our model is that it offers no insight
into the biophysical mechanisms that produce variable slopes
in the integration of both decision signals by the buildup
neurons of the SC and the formation of the categorical choice.
The biophysical and circuit properties underlying operations
such as integration are an active topic of investigation at the
theoretical and experimental level (Cutsuridis, Kahramanoglou,
Smyrnis, Evdokimidis, & Perantonis, 2007; Durstewitz, 2003;
Wang, 2002). More recently, Cutsuridis et al. (2007) advanced a
biophysical model which modelled the biophysically plausible
mechanisms that produced climbing activity with adjustable
slope. In that study, Cutsuridis et al. (2007) extended the
present SC model by adding two cortical modules that
generated the planned and reactive decision signals. The
decision signals derived from the population activities of
networks of pyramidal neurons and inhibitory interneurons.
Hodgkin–Huxley mathematical formulations were used to
model the population activities and explore the biophysical
mechanisms in question. The model predicted that variability
in the maximal conductances of specific ionic and synaptic
currents (INaP, INMDA and IAMPA) can reproduce the full range
of slope values (see Table 2 herein) of the planned and reactive
inputs of the SC model, while keeping the preset criterion level
fixed. By reproducing the full range of the slope values, the
model was implicitly able to generate the correct antisaccade
and the error prosaccade reaction time (RT) distributions as
well as the error prosaccade probabilities in the large group
of 2006 men (Evdokimidis et al., 2002; Smyrnis et al., 2002)
investigated in here.

4.5. Model extensions and alternatives

The analyses presented here show that the integration of
sensory evidence to a threshold accounts for a wide variety
of behavioural and physiological observations related to the
antisaccade task. Several extensions to the basic idea deserve
consideration. Variability in the parameters of integration, such
as starting time and the baseline neuronal activity, may be
helpful in improving the generality of the model, especially
when incorporating prior biases into the decision (Carpenter &
Williams, 1995). Similarly, the afferent delay between reactive
and planned decision signals may be variable and is likely to
change as a function of time. A dynamic afferent delay between
inputs embodies the idea that commitment to one or another
behavioural option may need to occur with some degree of
urgency. These factors will need to be implemented into a more
complete computational model.

Finally, work is underway in our laboratory to extend the
present and the Cutsuridis et al. (2007) works and examine
the effects of neurotransmitters such as dopamine (DA) on
the predicted synaptic (IAMPA and INMDA) and ionic (INaP)

conductances of pyramidal neurons in the two cortical networks
in order to study the performances of patients suffering
from schizophrenia in the antisaccade task (Kahramanoglou,
Cutsuridis, Smyrnis, Evdokimidis, & Perantonis, 2005, 2006).
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