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Abstract

A biophysical cortico-colicular model of saccade initiation based on competitive integration of planned and reactive cortical saccade

decision signals in the intermediate layer of the superior colliculus is introduced. The variable slopes of the climbing activities of the input

cortical decision signals are produced from variability in the ionic and synaptic conductances of cortical neurons. The model reproduces

the unimodal distributions of saccade reaction times for correct antisaccades and erroneous prosaccades as well as the variability of

saccade reaction times and the overall error probabilities in a large sample of 2006 young men performing an antisaccade task.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The antisaccade task is a reaction time (RT) task in
which the subjects are instructed to perform eye move-
ments in the opposite direction from the location of a
stimulus that appears in their left or right peripheral visual
field while they are fixating on a central stimulus [22]. The
antisaccade reaction times (aSRTs) have been reported to
be longer than those in the reflexive saccades (prosaccades)
and to vary randomly from trial-to-trial and both between
subjects and within subjects [19]. The distribution of aSRTs
is unimodal and the percentage of erroneous prosaccades
towards the peripheral stimulus is 25% [16,43].

In a modeling attempt of the antisaccade task, Cutsuridis
and colleagues [10,11] hypothesized that the preparation of
an antisaccadic eye movement consisted of two cortically
independent and spatially separated decision signals
e front matter r 2006 Elsevier B.V. All rights reserved.
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representing the reactive and planned saccade signal,
whose linearly rising phases were derived from two normal
distributions with different means and standard deviations.
These two cortical decision signals were integrated at
opposite colliculi locations, where they competed against
each other via lateral excitation and remote inhibition. A
saccade was initiated when these decision signals, repre-
sented by the neuronal activity of superior colliculus (SC)
buildup neurons with non-linear growth rates reached a
preset criterion level. The crossing of the preset criterion
level in turn released the ‘‘brake’’ from the SC burst
neurons and allowed them to discharge resulting in the
initiation of an eye movement. The model’s main predic-
tion was that there was no need of a top-down inhibitory
signal that prevented the error prosaccade from being
expressed, thus allowing the correct antisaccade to be
released [7]. Moreover, the model simulated successfully
responses of fixation neurons [34], buildup neurons
[18,33,35,36] and burst neurons [18,35,36,48] and offered
a functional rationale at the SC neuronal population level
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of why the antisaccadic RTs were long and variable.
Finally, the model simulated accurately the correct and
error antisaccade RTs, the RT shape distributions and the
error prosaccade probabilities in a population sample of
2006 men [16,43].

The model presented in this paper extends the previous
model of Cutsuridis and colleagues [10,11] by examining
the biophysical mechanisms that cause the variability in the
rising phases of the two cortical decision signals in the SC
model. It does so by adding two cortical modules that
generate the reactive and planned decision signals (see
Fig. 1) that drive the SC model. The activities of the two
cortical modules are derived from the population activities
of networks of pyramidal neurons and inhibitory inter-
neurons. Hodgkin–Huxley mathematical formulations are
used to model the population activities and explore the
biophysical mechanisms in question. The present model
predicts that variability in the maximal conductances of
specific ionic and synaptic currents (see Results section for
which currents and their corresponding values) can
reproduce the full range of slope values (see Table 4) of
the planned and reactive inputs of the SC model [10,11],
while keeping the preset criterion level fixed. By reprodu-
cing the full range of the slope values, the model can
implicitly generate the correct antisaccade and the error
prosaccade RT distributions as well as the error prosaccade
probabilities in the large group of 2006 men [16,43]
published elsewhere [10,11].
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Fig. 1. Composite model architecture of cortical modules and superior

colliculus module with reactive and planned inputs. Cortex: triangular

neurons symbolize pyramidal cells and diamond shaped neurons

symbolize GABAergic inhibitory inteneurons. Superior colliculus: black

nodes are fixation cells, gray nodes are buildup cells, and white nodes are

burst cells. The inputs to this layer are classified as reactive (R) and

planned (P). Their respective time course is shown schematically

corresponding to an onset and offset.
2. Materials and methods

2.1. Cortical model neuron

Each pyramidal neuron is described by a single
compartment and obeys the current balance equation

Cp
dVp

dt
¼ � IL � INa � INaP � IHVA � IKd � IC � IKs

� IAHP � IAMPA � INMDA � IGABA þ I inj, ð1Þ

where Cp ¼ 1.2 mF/cm2 and Iinj is the injected current (in
mA/cm2). Similarly, each inhibitory interneuron is also
described by a single compartment and obeys the current
balance

Cinh
dV inh

dt
¼ � IL � INa � IKd � IAMPA

� INMDA � IGABA þ I inj, ð2Þ

where Cinh ¼ 1.2 mF/cm2. The leak current IL ¼ gL(V–EL)
in Eqs. (1) and (2) has a conductance gL ¼ 0.02mS/cm2

and reversal potential EL ¼ �65mV.
The voltage-dependent currents are described by Hodgkin–

Huxley formalism [25]. Each gating variable x is described
by a first order kinetics

dx

dt
¼ axðV Þð1� xÞ � bxðV Þx ¼ ½x1ðV Þ � x�=txðV Þ. (3)

The fast sodium current in Eqs. (1) and (2) is governed
byINa ¼ ḡNam3hðV � ENaÞ, where the activation variable,
m, is replaced by its steady state, m1 ¼ am=ðam þ bmÞ, am ¼

½�0:1ðV þ 33Þ�=½�1þ expð�0:1ðV þ 33ÞÞ� and bm ¼

4 expð�ðV þ 58Þ=12Þ. The inactivation variable, h, obeys
Eq. (3), where h1 ¼ ah=ðah þ bhÞ, th ¼ 1=ðah þ bhÞ, ah ¼

0:07 expð�ðVþ50Þ=10Þ and bh ¼1=½1þ expð�0:1ðV þ 20ÞÞ�.
In addition to the fast sodium current, a delayed rectifier

potassium current is included in both Eqs. (1) and (2) to
counteract the sodium current’s effect on cell’s membrane
potential. The delayed rectifier is given by,IKd ¼ ḡKdn4ðV�

EKdÞ, where an ¼ ½�0:01ðV þ 34Þ�=½�1þ expð�0:1ðV þ
34ÞÞ� and bn ¼ 0:125 expð�ðV þ 44Þ=25Þ [49].
A persistent Na+ current (INaP) is also included in the

current balance equation of the pyramidal neuron in order
to allow the more persistent Na+ current to make a more
significant contribution to the membrane potential in the
subthreshold level [2,4]. The persistent Na+ current is
given by, INaP ¼ ḡNaPmhðV � ENaPÞ, where m1 ¼ am=
ðam þ bmÞ, tm ¼ 1=ðam þ bmÞ, am ¼ ½�0:2816ðV þ 12Þ�=½�1
þ expð�ðV þ 12Þ=9:3Þ�, bm ¼ ½0:2464ðV � 15Þ�=½�1þ exp
ððV � 15Þ=6Þ�, h1 ¼ ah=ðah þ bhÞ, th ¼ 1=ðah þ bhÞ, ah ¼

2:8� 10�5 expð�ðV þ 42:8477Þ=4:02Þ and bh ¼ 0:02=½1þ
expð�ðV � 413:9284Þ=148:26Þ�. The conductance gNaP ¼

1mS/cm2 and the reversal potential ENaP ¼+55mV [15].
The persistent Na+ current has been found to exist in cortical
pyramidal cells due to its sensitivity with TTX [4]. This
current is activated within a few ms after depolarization,
but it inactivates very slowly. Because it is activated near
the resting potential, it tends to amplify EPSPs [4]. Finally,
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Table 1

Parameter profile of the pyramidal cell

Current unit Parameter values

Cm (mF/cm2) 1.2

gL (mS/cm2) 0.02

EL (mV) �65

gNa (mS/cm2) 45

ENa (mV) 55

gNaP (mS/cm2) 1

ENaP (mV) 55

gKd (mS/cm2) 18

EKd (mV) �80

gHVA (mS/cm2) 1

EHVA (mV) 120

gKs (mS/cm2) 0.12

EKs (mV) �80

gAHP (mS/cm2) 5

EAHP (mV) �80

Kd (mM) 30

g(mMcm2/ms/mA) 0.002

tCa,AHP (ms) 70

gC (mS/cm2) 80

EC (mV) �80

tCa,C (ms) 10

[Ca2+]o (mmol/lt) 2

[Ca2+]rest (mmol/lt) 100e�3

Table 2

Parameter profile of the inhibitory interneuron

Current unit Parameter values

Cinj (mF/cm
2) 1.2

gL (mS/cm2) 0.02

EL (mV) �65

gNa (mS/cm2) 45

ENa (mV) 55

gKd (mS/cm2) 18

EKd (mV) �80
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it has quite an effect on the firing frequency of the cell,
since too much INaP will prevent repolarization following
action potentials [31].

The high-voltage activated (HVA) calcium current
included in Eq. (1) is considered to be a mixture of
L- and N-type Ca2+ currents, which according to [3] have
the same activation kinetics. The HVA calcium current is
expressed by IHVA ¼ ḡHVAm1ðV � EHVAÞ, where m1 ¼

½1þ expð�ðV þ 20Þ=9Þ��1 [30].
The afterhyperpolarizing calcium-activated potassium

current is given by I sAHP ¼ gsAHPð½Ca
2þ
�=ð½Ca2þ� þ

KDÞÞðV � EsAHPÞ with KD ¼ 30 mM [49]. The intracellular
calcium concentration [Ca2+] is governed by a first order
differential equation

d½Ca2þ�

dt
¼ �gIAHP �

ð½Ca2þ� � ½Ca2þ�restÞ

tCa;AHP
, (4)

where g ¼ 0.002 mM (mS mA)�1 cm2 is proportional to the
membrane area and the volume beneath the membrane
[49]. The time constant tCa,AHP ¼ 70ms describes collec-
tively the various extrusion and buffering mechanisms [51].
The AHP current has been characterized as a rather small
current, which depends solely on the concentration of
intracellular calcium just below the membrane. It can
sustain its activation only when calcium rushes into the cell
during an action potential [32]. Blocking this current
prevents firing frequency adaptation from occurring [31].

A fast BK Ca2+- and voltage dependent C-type K+

current (IC) is also included in the model. In contrast with
the AHP current, the IC current is a fairly large outward
current, whose activity depends on the membrane potential
as well as the intracellular Ca2+ concentration [32]. It
quickly activates upon the entry of calcium through
calcium channels during an action potential and through
this process it shuts off the readiness for the next spike [32].
The biophysical properties of this current used herein were
adopted from [15]. The IC ¼ ḡfCc2ðV � ECÞ, where c obeys
Eq. (3) with c1 ¼ ac=ðac þ bcÞ, tc ¼ maxð1=ðaþ bÞ; 1:1Þ,
ac¼�0:00642V s�0:1152�=½�1þexpð�ðV sþ18Þ=12Þ�, V s ¼

V þ 40 log10ð½Ca�iÞ and bc ¼ 1:7 expð�ðV s þ 152Þ=30Þ. The
intracellular calcium concentration obeys Eq. (4), with
tCa,C ¼ 10ms. Notice that the time constant values for IC
and IAHP are different. We have assumed that two different
Ca2+ ionic pools exist, one mediating the activation of
IAHP and the other one mediating the activation of IC. The
rationale behind such an assumption is that the internal
Ca2+ concentration affecting IC rises and falls fairly
rapidly with every spike, whereas the internal Ca2+

concentration affecting IAHP increases gradually after each
action potential [51].

A slowly inactivating K+ current (IKs) is also present in
pyramidal neurons. Activation of this slowly inactivating
outward K+ current shunts excitatory inputs and hence
prevents a cell from reaching spike threshold [3]. The
formulation of IKs is taken from [15]. More specifically,
IKS ¼ ḡKSabðV � EKSÞ, where a1 ¼ 1=½1þ expð�ðV þ 34Þ
=6:5Þ�, ta ¼ 6:0, b1 ¼ 1=½1þ expððV þ 65Þ6:6Þ� and tb ¼

200þ 3200=½1þ expð�ðVþ 63:6Þ=4Þ�. The values of the
ionic parameters are displayed in Tables 1 and 2. The ionic
channels steady-state and time-constant curves are shown
in Fig. 2.
2.2. Cortical model synapse

The synaptic current is given by I syn ¼ gsynsðV � EsynÞ,
where gsyn is the maximal synaptic conductance and Esyn is
the reversal potential. In the model, three synaptic currents
are included: IAMPA, INMDA and IGABA-A. The values of the
synaptic parameters are displayed in Table 3. The gating
variable s, which represents the fraction of open synaptic
ion channels, obeys the following differential equation
[12,38]

ds

dt
¼ aF ðVpreÞð1� sÞ � bs, (5)
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Fig. 2. Composite plot of activation and inactivation curves and their time constants for the model ionic channels. Membrane potential units are in mV.

Time constant units are in ms.
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where the normalized concentration of the postsynaptic
transmitter–receptor complex, F(Vpre), is assumed to be an
instantaneous and sigmoid function of the presynaptic
membrane potential, F ðVpreÞ¼1=ð1þ expð�ðVpre � yÞ=2ÞÞ,
where ysyn ¼ 0mV is high enough so that the transmitter
release occurs only when the presynaptic cell emits a spike
[36,49]. The values of the channel opening and closing rates
are displayed in Table 3.
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Table 3

Synaptic parameters

Synaptic current unit g (mS/cm2) E (mV) a (ms�1) b (ms�1)

AMPA 4 [4–5.89] 0 12 0.2

NMDA 0.29 [0.05–0.29] 0 8 0.1

GABA-A 0.2 [0.2–5.6] �75 12 0.2

Synaptic conductance values in brackets signify the normal range of

synaptic conductances adapted from [13] and references therein.

V. Cutsuridis et al. / Neurocomputing 70 (2007) 1390–14021394
2.3. Cortical network connectivity

The network model consists of N pyramidal neurons and
M inhibitory interneurons (MEN/3) [1]. All four types of
neuronal connectivity are allowed: pyramidal-to-pyrami-
dal, pyramidal-to-inhibitory, inhibitory-to-pyramidal and
inhibitory-to-inhibitory. All-to-all connectivity is assumed
between inhibitory interneurons and between inhibitory
interneurons and pyramidal neurons in the network (see
Fig. 1).

In the model, the maximal synaptic conductance gsyn is
estimated by dividing by a fixed average number of
synaptic inputs per neuron, Msyn, so that when the number
of synapses Msyn is varied, the total synaptic drive per cell
in average remains the same [50].

2.4. Population firing rate

The population firing rate is defined as the fraction of
neurons that are active in a short interval [t, t+Dt] divided
by Dt and it is estimated by

AF ¼
nactðt; tþ DtÞ

DtN
, (6)

where nact is the number of spikes in the time interval [t,
t+Dt], N is the total number of neurons in the network,
and Dt is the size of the time bin [20].

2.5. Superior colliculus (SC) model

The SC model is a one-dimensional on-center off-
surround leaky competitive integrator of the intermediate
layer of the SC developed in another study by our group
[10,11]. The neural architecture of the model is described in
Fig. 1. Detailed description of the model and the equations
that governed it can be found in [11].

2.6. Implementation

The simulations were performed on a Pentium IV
3.2GHz PC with MATLAB’s version R13 installed. The
whole system of differential and algebraic equations was
implemented in MATLAB (The MathWorks, Inc, Natick,
MA). The differential equations of the cortical neural
integrator model were integrated numerically using one of
the MATLAB ordinary differential equations solvers
(ode45, an implicit solver based on the Dormand–Prince
pair method [41]) with time step Dt ¼ 0.001ms). Relative
(error) tolerance was set to 10�6.

3. Experimental results

3.1. Single neuron simulations

In response to a depolarizing current pulse, the model
neuron initially fires at a high frequency, then adapts to a
steady-state frequency (Fig. 3). This firing pattern is in
parallel with the time course of Ca2+ accumulation [24].
The IAHP increases with [Ca2+], hence the cell is gradually
hyperpolarized and the firing frequency decreases in time.
After the current pulse, there is a long-lasting AHP that
mirrors the Ca2+ and hence the IAHP decay (Fig. 3) [49].
In Fig. 4 a plot of the firing frequency versus the applied

current intensity (f–Iapp curve) of the model neuron is
shown. It is noticeable that f–I curve is quite non-linear.
The firing rate can be as high as 400Hz [21,49].
Fig. 5 shows plots of the model’s synapse. A brief current

pulse is applied to the pre-synaptic cell, which generates a
single action potential (see Fig. 5(A)), which in turn elicits
an inhibitory postsynaptic current (IGABA) and two
excitatory postsynaptic currents (IAMPA and INMDA) (see
Fig. 5(B)).

3.2. Population neuron simulations

The two cortical network models simulated herein
consisted of 15 pyramidal neurons and 5 inhibitory
interneurons each. We assumed that the population firing
rate of each cortical model represented the average firing
rates of the frontal (e.g., frontal eye fields, FEF) and
parietal (e.g., lateral intraparietal area, LIP) cortices. As we
mentioned in the Materials and Methods Section, all four
types of neuronal connectivity were allowed: pyramidal-to-
pyramidal, pyramidal-to-inhibitory, inhibitory-to-pyramidal
and inhibitory-to-inhibitory. Small cortical column con-
nectivity (asymmetry) was examined in this study. That
meant that the synaptic strength between pyramidal
neurons inside the cortical column was maximal, whereas
the synaptic strength between neurons inside and outside
the column was 10% of gmax [15]. The number of
pyramidal neurons in a cortical column was chosen
arbitrarily based on a simple rule: floor(N/2) –2, where
N is the number of pyramidal neurons in the network. The
reason we chose such a rule is because we wanted the
cortical column to contain a sufficiently large number of
heterogeneous neurons to produce a smooth population
signal. We did not get into quantitative analysis of the
cortical columns as in [5,6]. In this particular network, the
number of pyramidal neurons in a cortical column was 5.
Furthermore, model pyramidal neurons and inhibitory

interneurons were not identical. Heterogeneity in the
network was induced by applying a depolarizing current
Iinj of different intensity to each neuron and by varying the
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Fig. 3. Spike-frequency adaptation in response to a current pulse (not shown). Duration of the current pulse is 300ms (100–400ms). Each action potential

generates a [Ca2+] influx and the adaptation time course follows that of [Ca2+] and hence IAHP accumulation. Slow AHP after the spike firing mirrors the

[Ca2+] decay process.

Fig. 4. Pyramidal cell firing and its frequency–current curve.

V. Cutsuridis et al. / Neurocomputing 70 (2007) 1390–1402 1395
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Fig. 5. Model of single neuron synapse. (A) A brief current pulse is applied to a presynaptic cell that generates a single action potential. (B) An inhibitory

postsynaptic current (IGABA�A) and two excitatory postsynaptic currents (IAMPA and INMDA) are elicited.
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maximal synaptic conductances of each neuron. The
injected current Iinj had a Gaussian distribution with mean
I injm and a standard deviationI injs . The parameter I injm
determined the mean excitation be the external drive and
I injs the degree of heterogeneity in the neuronal population.
Similarly, the maximal conductances of the three synaptic
currents (AMPA, NMDA and GABA-A) were allowed to
vary randomly with means gAMPA

max , gNMDA
max , gGABA�A

max and
standard deviations gAMPA

s ¼ 0:05mS=cm2, gNMDA
s ¼

0:05mS=cm2, gGABA�A
s ¼ 0:05mS=cm2. The case of symme-

trical neuronal connectivity and neuronal homogeneity was
examined in another study from our group [9].

To estimate the population firing rate of each cortical
model we divided the time axis into bins of 100ms and
summated in each bin the number of spikes. We then
divided the total number spikes in each bin by the number
of neurons in the network (see Eq. (6)). Fig. 6 shows the
spiking rates of 3 pyramidal neurons and their estimated
average population firing rate in a single run (trial). The
output population firing rates of the two cortical networks
can be used as inputs to the SC model.

In a recent study, Cutsuridis and colleagues [11]
predicted that in order to quantitatively simulate the
correct antisaccade and error prosaccade SRT distributions
as well as the error probabilities in 10 virtual groups of
2006 subjects, two spatially separated and independent
cortical decision signals were required as inputs to a neural
model of the intermediate layer of the SC. In this model,
the rising phases of the cortical decision signals were
allowed to vary randomly from two normal distributions
with different means and standard deviations for each of
the 10 virtual groups of subjects (see Materials and
Methods section of [11] on how clustering analysis was
performed). Table 4 depicts the predicted values of the
means and standard deviations of the cortical planned and
reactive decision signals (mean values from all 10 groups
range from 0.75 to 10.5) as well as the threshold values
(450750Hz) used to predict the range of correct and error
SRTs and error rates from the Cutsuridis et al. study [11].
As we mentioned in the Introduction section, our goal in

the present study is to model the cortical decision signals of
the SC model [11] as outputs of two cortical networks
consisting of pyramidal neurons and inhibitory interneur-
ons and to examine the biophysical mechanisms that
produce the variability in their rising phases. More
specifically, we are interested in reproducing the full range
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Fig. 6. (Top) Smooth spline fit of average firing rate of a heterogeneous population of 3 pyramidal and 1 inhibitory interneuron with asymmetrical

connections; (Middle) Membrane potentials of three pyramidal neurons; (Bottom) Membrane potentials of one GABAergic interneuron. Time units are

in ms.

V. Cutsuridis et al. / Neurocomputing 70 (2007) 1390–1402 1397
of slope values (0.75–10.5) of the cortical input signals
across all ten virtual groups, while keeping the preset
threshold level fixed (�450750Hz) (see Table 4). To do so,
we performed detailed parametric analysis of the ionic and
synaptic maximal conductances of all the currents used in
our present’s study model. We allowed the maximal
conductances of all synaptic and ionic currents used in
the model to vary (see Table 5 for conductance values of
each current used). The maximal conductance values for
each cell model were chosen to correspond to physiologi-
cally realistic values [2,4,8,15,26,27,44,45,46]. Conductance
values in italics were considered as the basis conductance
values [15]. If successful at reproducing the slope values
depicted in Table 4, then we could implicitly say that we are
able to generate the correct antisaccade and the error
prosaccade RT distributions and the error probabilities in
a large group of 2006 men [16,43] published elsewhere [11].
In our parametric analysis, we initially allowed the

maximal conductance of each current to vary separately,
while we kept the conductances of all other currents to
their basis values (see italics values). For each different
value of the maximum conductance, we estimated the
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Table 5

List of ionic and synaptic parameters varied in the model to produce

varying climbing activity

Current unit g (mS/cm2)

Pyramidal neuron

IAMPA 4, 4.5, 5, 5.5, 5.9

INMDA 0.05, 0.1, 0.2, 0.29

IGABA�A 0.2, 0.5, 1, 1.5, 2.5, 3, 4, 5, 5.5

INaP 0.05, 0.1, 0.5, 1, 2, 5, 10, 30, 50

IKd 8, 18, 28, 58, 78, 108, 138, 158

IKs 0.05, 0.1, 0.12, 0.2, 0.5, 1, 2, 3, 5, 10, 20, 50, 100

IC 1, 5, 10, 30, 50, 80, 100, 150

IAHP 0.5, 1, 3, 5, 7, 10, 50, 100, 150

IHVA 0.05, 0.1, 0.5, 1, 2, 5, 8

Inhibitory interneuron

IAMPA 4, 4.5, 5, 5.5, 5.9

INMDA 0.05, 0.1, 0.2, 0.29

IGABA�A 0.2, 0.5, 1, 1.5, 2.5, 3, 4, 5, 5.5

Conductance values in italics are considered as the basis conductance

values [15].
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network’s population firing rate and subsequently its slope.
To estimate the slope, we fitted a straight line on the rising
phase of each population firing rate and calculated the
angle the straight line with the x-axis (time) (see Fig. 6).
From all the synaptic and ionic currents used in our
parametric analysis, only the IKd, INaP, IHVA, IAMPA, and
INMDA were found to produce changes in the slopes of the
climbing activities of the cortical signals. From these
currents, IHVA and IKd were able to produce the entire
range of slope values observed in Table 4. However, IHVA

and IKd caused the maximal neuronal population firing
rate to also vary (ranging from about 50 to 500Hz)
between different conductance value runs (see Fig. 7 top).
Hanes and Schall [23] showed that while the climbing
activities of FEF neurons vary randomly from trial to trial,
their maximum firing rate remains constant. Similarly,
Cutsuridis and colleagues [11] predicted that the maximum
neuronal firing rate and hence the threshold level remain
constant from trial to trial in each virtual group, while the
threshold level varies slightly (about750Hz) around its
maximum value (�450Hz) between virtual groups. For
these reasons, we excluded IHVA and IKd currents from any
further examination.
Parametric examination of INaP’s maximal conductance

produced the entire range of slope values of the climbing
activities seen in Table 4, whereas parametric examination
of IAMPA, and INMDA produced a subset of them. For the
different values of these currents’ conductances, the
maximal cortical neuronal firing rate remained unaffected
(�450Hz).
The final step was to try combinations of maximal

conductance values of the INaP, IAMPA, and INMDA. We
found that the range of values of maximal conductances of
these currents that produce the full range of slope values
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Fig. 7. (Top) Composite smooth spline fits of average firing rate of a

heterogeneous population of 15 pyramidal neurons and 5 inhibitory

interneurons with asymmetrical connections for different values of gHVA.

Note that maximal population firing rate varies between 50 and 650Hz for

0.1 and 2mS/cm2 HVA conductance, respectively; (Bottom) Composite

smooth spline fits of average firing rate of a heterogeneous population of

15 pyramidal neurons and 5 inhibitory interneurons with asymmetrical

connections for different values of gNaP. Note that maximal population

firing rate varies between 450750Hz for 0.1 and 8mS/cm2NaP

conductance, respectively.
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(0.75–10.5 rad from all 10 virtual groups) of climbing
activities and the fixed threshold (�450750Hz) for all 10
virtual groups (see Fig. 7 bottom) observed in Table 4
were: INaP (mS/cm2): 0.05, 0.1, 0.5, 1, 2, 5, 10, 30; IAMPA

(mS/cm2): 4, 4.5, 5, 5.5, 5.9; INMDA (mS/cm2): 0.05, 0.1, 0.2,
0.29.

4. Discussion

4.1. General issues

In the brain, climbing activity is a very prominent profile
of neuronal activity observed in the thalamus, FEFs,
primary motor cortex, SC and other brain areas and it has
been found to be related to the anticipation of forthcoming
events and to the generation of movements [13]. In the
FEFs of monkeys populations of visuomotor neurons have
been found that begin to fire in advance of saccades, with
their activity rising linearly upon presentation of a suitable
target stimulus [23,39]. The primary function of these
neurons is to make preparations for saccadic eye move-
ments [23]. Buildup cells in the monkey SC begin to linearly
build up their activity after the signal to make a saccade is
presented [17]. In all these studies, the rate of rise varies
randomly from trial to trial and the saccade is initiated
when this activity reaches a fixed threshold [23,39].

4.2. Previous models

Very few models have tried to address important
questions concerning the climbing activity of neurons in
the cortex. Okamoto and Fukai [37] addressed the question
of what produces the linearity of the climbing activity in a
population of cortical neurons and showed that inputs to
FEFs or supplementary eye fields from the visual cortex is
possible to be modified by attention that can easily be
varied across trials. However, their model was too
simplistic since they modeled only two currents, namely
the ionic ADP and the synaptic AMPA currents.
In another study, Reutimann and colleagues [40]

advanced a general model of interacting neuronal popula-
tions that generated event-based representation of time by
slowly increasing (climbing) activity and suggested a
functional role for the climbing activity of inferotemporal
(IT) neurons. Although their model was successful at
simulating this particular set of behavioral data, they failed
to identify the ionic and synaptic mechanisms of the slowly
increasing climbing activity.
Durstewitz [13,14] has recently offered a plausible

hypothesis of what might produce variability in the rising
rates of a decision signal. He advanced a biophysical model
that produced temporal integrator-like activity with vari-
able slopes, through a single-cell positive feedback loop
between firing rate, spike-driven Ca2+ influx, and Ca2+-
activated inward currents. In the model the self-organizing
process was based on observations that the variance of the
intracellular Ca2+ concentration and the variance of the
neural firing rate and of activity-dependent conductances
reach a maximum as the biophysical parameters of the
neuron approached a configuration required for temporal
integration. However, the response times produced by this
model were of the order of several hundred milliseconds to
seconds, whereas the RTs in the antisaccade task range
from tens to few hundreds of milliseconds.
All three studies were successful in their own respect, but

none of them has attempted to answer the questions of
what are the biophysical mechanisms underlying the
generation of variable temporal integrator behavior and
how these mechanisms are related to behavior. These
questions are successfully addressed by our model.
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4.3. What have we learned from the model?

The model presented herein offers an alternative
theoretical view on biologically plausible biophysical
mechanisms underlying the generation of slowly climbing,
temporal integrator-like activity found in the neocortex
[23,39]. It simulates accurately the neuronal responses of
pyramidal neurons and inhibitory interneurons by incor-
porating in its equations a wealth of ionic and synaptic
currents found experimentally in the cortex [47]. We chose
to model these particular ionic currents, because they are
the main representatives (families) of the cortical ionic
currents and because their properties have been studied
extensively in the lab [2,4,30–32,49,51] as well as compu-
tationally modeled [15,51]. The model in addition to
computational findings of previous studies from our group
[9–11] is capable of producing time intervals of the order of
tens up to few hundred of milliseconds, as they are
observed in the antisaccade task [16,43].

The model makes two important predictions. First, it is
successful at predicting that variability only in the maximal
conductances of ionic INaP and synaptic IAMPA, and INMDA

currents, and not in any other currents used in the model,
can produce the predicted full range of variability of
climbing activities as well as their maximal firing rate of
two independent and spatially separated cortical decision
signals needed to drive a SC model [11] and, hence,
implicitly predict the correct antisaccade and the error
prosaccade RT distributions as well as response probabil-
ities in all 10 virtual groups of subjects (see Table 4; [11]).
Second, the model predicts the ranges of values of INaP,
IAMPA, and INMDA conductances, which are verified by
patch clamp studies [2,4,8,15,26,27,45,46], needed to
produce the full range of slope values of the climbing
activities of the decision signals.

We believe that both predictions are equally important
that ought to be verified experimentally in vivo by the
experimental scientists of the brain with the use of agonists
and antagonists that will modulate (enhance or partially
block, respectively) the conductances of the ionic and
synaptic currents used in the model as well as with the use
of neuromodulators such as dopamine or acetylcholine,
and simultaneously record via single cell recordings their
effects on the neuronal responses of cortical neurons of
awake and behaviorally involved animals.

4.4. Future extensions

Work is underway in our laboratory to extend the
present work and examine the effects of neurotransmitters
such as dopamine (DA) on the predicted synaptic (IAMPA

and INMDA) and ionic (INaP) conductances of pyramidal
neurons in the two cortical networks in order to study the
performances of patients suffering from schizophrenia in
the antisaccade task [28]. Briefly, in that study we try to
show how the effect of DA-D1 can affect the cortical
modules by acting directly on the receptors of the cells and
hence modify the currents of these modules. The action of
DA-D1 on the cortical modules is effectively modifying the
profile of their spiking rate and subsequently of their
average firing rate and hence critically changes the
behavior of these populations of cells. We have successfully
simulated three different levels of DA (hypo, normal, and
hyper) to study its effects on the rising phases of the
cortical decision signals and observed that the simulated
aSRTs for the hypo-DA level, representing the schizo-
phrenic group had higher standard deviations, mean
values, error rates and coefficient of variation than in
normal and hyper DA level [28,29]. This finding comes in
perfect agreement with our psychophysical observations
[28,29].
Also, another line of research that our group is currently

pursuing and that extends the previous work [28,29] is the
study of if there are any effects of DA-D2 receptors on the
neuronal responses of pyramidal neurons in the cortical
modules and subsequently on the behavioral data of the
patient group mentioned before.
Finally, we are examining the effects of DA on ionic and

synaptic mechanisms of cortical GABAergic inhibitory
interneurons, their role in the cortical microcircuit [42],
how their neuronal excitability affects the responses of
pyramidal neurons and subsequently the population
climbing activity of the cortical modules. The last line of
research will help generalize our model, make new
predictions (if any), and suggest new experiments.
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