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a b s t r a c t

In this paper a bottom-up approach for human behaviour understanding is presented,

using a multi-camera system. The proposed methodology, given a training set of normal

data only, classifies behaviour as normal or abnormal, using two different criteria of

human behaviour abnormality (short-term behaviour and trajectory of a person).

Within this system an one-class support vector machine decides short-term behaviour

abnormality, while we propose a methodology that lets a continuous Hidden Markov

Model function as an one-class classifier for trajectories. Furthermore, an approximation

algorithm, referring to the Forward Backward procedure of the continuous Hidden

Markov Model, is proposed to overcome numerical stability problems in the calculation

of probability of emission for very long observations. It is also shown that multiple

cameras through homography estimation provide more precise position of the person,

leading to more robust system performance. Experiments in an indoor environment

without uniform background demonstrate the good performance of the system.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Motion analysis in video and particularly human
behaviour understanding has attracted many researchers
[24], mainly because of its fundamental applications,
which include video indexing, virtual reality, human–-
computer interaction and smart surveillance. Smart
surveillance in itself is one of the most challenging
problems in computer vision. Its goal is to automatically
model and identify human behaviours, calling for human
attention only when a suspicious behaviour is detected.
With the increasing number of cameras in many public
areas, the related research becomes more appealing and is
offered more application possibilities.

This work deals with the classification of behaviours as
normal or abnormal. Based on the remark that abnormal
behaviour is considered to be rather infrequent (and thus
ll rights reserved.

tonakaki),
abnormal), we choose to model normal behaviour and
define as abnormal any behaviour deviating from that
normality model. Our methodology applies two classifica-
tion criteria:
(1)
 short-term behaviour;

(2)
 trajectory.
The short-term behaviour refers to the type of behaviour
that can be localized in a spatio-temporal sense, i.e. is
brief and within restricted space. Examples of such
behaviours are walking, standing still, running, moving
abruptly, etc.

In the related literature the aforementioned classifica-
tion criteria are mostly treated separately and, further-
more, few works concentrate on learning only normal
behaviours. The methodology provided herein provides
the discrimination of anomaly due to abnormal short-
term motion, as happens in the case of abrupt motion, as
well as anomaly due to long-term motion, as in the case of
abnormal trajectory.
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Recently, several researchers have dealt with the
problem of anomaly detection, which is the process of
behaviour classification as normal or abnormal. A variety
of methods, ranging from fully supervised [9,10] to semi-
supervised [36] and unsupervised systems [21,22,18], have
been proposed in existing literature, which we further
review in Section 2. It should be noted, however, that most
of the existing approaches do not use multi-camera
information, except for [38], where multiple video
streams are combined via a coupled Hidden Markov
Model.

Our methodology contributes in current research in
several ways:
�

Fig. 1. The main framework for video surveillance systems.
The presented approach reflects two different criteria
of labelling an observed behaviour as normal or
abnormal, since the final abnormality decision de-
pends on the output of two different classifiers with
independent inputs: short-term behaviour information
and trajectory information.

�
 The behaviours are classified according to the target

object’s position on the ground plane, based on
homography (see Section 4) which provides higher
accuracy compared to pure image-based techniques.1
�
 We introduce a continuous Hidden Markov Model
(cHMM) as an one-class classifier, using the notion of
length-normalized log-probability (see Section 6.1).

�
 A novel algorithm implementing a Forward Backward

procedure for the emission probability estimation in
HMMs is proposed, handling numerical instability
resulting from long sequences (see Section 6.2).

The rest of the paper is organized as follows. In Section
2 recent literature is reviewed, hinting as to the problems
the proposed method tackles. Section 3 provides an
overview of the proposed architecture. In Section 4 we
explain briefly how homography is used to obtain
information on the position of target objects on the
ground plane. In Section 5 short-term behaviours are
defined in terms of a set of extracted features. Section 5.2
describes in detail the classification process which is
based on short-term behaviours. In Section 6, on the other
hand, trajectories’ classification is presented by elaborat-
ing how we have used a continuous Hidden Markov Model
as an one-class classifier (Section 6.1). As an added value,
Section 6.2 contains the description and foundation of a
modified algorithm for the Forward Backward procedure
of probability estimation tackling long sequences in
contemporary computers. Finally, in Section 7 we provide
the experimental results and Section 8 concludes this
paper through a brief discussion on the lessons learned.
2. Related work

A typical surveillance system is divided into two layers,
which include low level and high level processes, respec-
tively, as depicted in Fig. 1.
1 An early version of this work has been presented in [20].
The low level contains such methods as motion
detection, object classification and tracking. In motion
detection research is focused on either static or adaptive
background subtraction or temporal differencing algo-
rithms, aiming to isolate the foreground pixels that
participate into any kind of motion observed in a given
scene. Object classification is the process of classifying
detected objects into such classes as humans or vehicles,
appearing in a given scene. Following motion detection
and object classification, detected objects are located in
the course of time and their trajectories are extracted via
tracking.

High level processes use motion information from the
low level in order to finally identify the type or nature of a
moving object’s activity. Motion-based techniques are
mostly used for short-term activity classification (e.g.
walking, running, fighting), and do not take into account
object trajectories. These techniques actually calculate
features of the motion itself and perform recognition of
behaviours based on these features’ values. Such methods
have been presented by Bobick et al. in [5] where motion
energy images (MEIs) and motion history images (MHIs)
are used to classify aerobic type exercises. Taking this
work another step further, Weinland et al. in [34] focus on
the extraction of motion descriptors analogous to MHIs,
called motion history volumes, from multiple cameras.
Then, these history volumes are classified into primitive
actions. Efros et al. in [11] compute the optical flow [14] of
a given object to recognize short-term behaviours through
a nearest-neighbour classification.

Several methods that take into account the object’s
trajectory for behaviour classification use the centroid of
the target object [1,19,27,15] or points of interest in a given
image [4]. These methods, however, fail to take into
account the short-term actions, for example the case
where a man threateningly moves his hands. Most of the
existing methods also face problems like view depen-
dency, and occlusion when they extract trajectories from
one camera.

HMMs and their variations have been widely applied
on trajectory classification, e.g. [7,17,2,32], due to their
unsupervised training, their simplicity and computational
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efficiency and mainly because motion can be viewed as a
short-term stationary signal. Abstract Hidden Markov
Models are used by Nguyen et al. in [26] to deal with
noise and duration variation, while Wang et al. in [33] use
conditional random fields for behaviour recognition in
order to be able to model context dependence in
behaviours. In our approach we use a continuous HMM
to model trajectory, using a methodology that allows the
model to be used as an one-class classifier.

Our presented approach focuses on the anomaly
detection aspect of behaviour understanding, which
differentiates it from the aforementioned methods. How-
ever, recent research has provided several anomaly-
detection-focused approaches that we briefly review here.
These approaches can be classified based on whether they
are supervised, semi-supervised or unsupervised.

In [9,10] the authors use supervised approaches that
need the classes of both normal and abnormal behaviour
to have an adequately large number of labelled instances,
provided as a priori information. In our method, on the
other hand, the training set only consists of normal
instances of data. The semi-supervised method of [36],
which only uses normal data, has a different approach in
that it creates a set of marginally normal instances as
abnormal to constitute an estimation of the abnormal
class. In our work, we have used the derived feature of
length-normalized log-probability to define the normal
class, without attempting to generate abnormal instances
at all. On the other hand, we also take into account
motion-based features used in an one-class SVM to detect
further abnormalities.

A set of unsupervised methods in existing literature
use large databases [37,6] containing all the observed
normal behaviour patterns, matching any new instances
against the database represented instances. In our work,
we have a single composite model (including HMM and
SVM classification) for all normal instances, thus avoiding
the need for database storage and look-up. Jiang et al. in
[18] start by representing normal trajectories by a single
HMM model per trajectory, clustering and retraining these
HMMs until a given condition holds. Other than the fact
that, in the work presented herein, we also cover the case
of short-term behaviours besides trajectory, we model the
full set of normal trajectories into a single HMM from the
beginning. Therefore, less calculations are required. Lee et
al. in [21] use n-cut clustering over motion energy images
to determine outliers, which are then judged as abnormal.
This approach is different from ours in that it requires
repetition of the n-cut clustering when a new instance is
to be judged. Another approach is found in [22], where a
multi-layer finite state machine representation is used to
model activities. According to [22], an abnormal activity is
judged by the number of times a valid transition fails to be
performed when matching the activity to the model state
machine. Our approach uses probabilistic tools as the
HMM instead of finite state machines to model uncer-
tainty within the normal activities’ modelling. In [35], a
single feature vector represents position, motion and
shape information, which is used in a clustering process
to detect abnormality. In our approach we extract separate
information for each classifier, attempting to model more
precisely two aspects of motion. This kind of modularity
allows switching between using one or both classifiers for
the detection of either abnormal short-term behaviours,
abnormal trajectory, or both. Furthermore, one can use
information from each classifier to determine the type of
abnormality detected.

In behaviour understanding, only few works employ
homography estimation. Park et al. in [28] have used
homography to extract object features and, using spatio-
temporal relationships between people and vehicles,
extract semantic information from interactions calculated
from relative positions. Ribeiro et al. in [30] have
estimated homography and enabled an orthographic view
of the ground plane which eliminates perspective distor-
tion origination from a single camera. Then, they have
calculated features in order to classify the data in four
activities (active, inactive, walking, running).

In existing literature two basic assumptions are usually
made in order to extract features. The first is that the
targets move almost vertically to the camera z-axis or
within a range that is small compared to the distance from
the camera. This assumption ensures that the size
variation of moving objects is relatively small. The second
assumption is that humans are planar objects, so that
homography-based image rectification can be possible.
However, even though this later assumption may be true
when the cameras are close to being vertical to the ground
plane, as in the case of cameras viewing from high
ceilings, it does not stand in general. In our method we get
over these limitations, as can be deduced from the section
on homography estimation (Section 4).
3. Proposed methodology

The proposed methodology is based on the fusion of
data that we collect from several cameras with over-
lapping fields of view. We perform classification using two
different one-class classifiers, a support vector machine
(SVM) and a continuous Hidden Markov Model, with each
classifier having different feature vectors as input. The
final decision on the behaviour is made by taking into
account outputs from both classifiers.

The system architecture is presented in Fig. 2. The low

level addresses the problem of motion detection and blob
analysis, providing the upper level with two different
features vectors per instance. We note that an object’s
blob is defined to be the set of the foreground pixels that
belong to that object. Background subtraction is applied
for motion detection and a bounding box is extracted. The
blobs apparent within the viewing area of each camera are
used to extract the objects’ principal axes. These principal
axes in combination with the corresponding homography
calculations are used to locate each object, i.e. determine
the points where the target object touches the ground
plane. From the coordinates of the latter points we
calculate the trajectories of the objects.

Additional object information, namely the object’s
centroid, blob size and shape are made available during
the preprocessing step. Furthermore, a histogram is
extracted from the moving object’s shape depicting the
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moving object’s blob projection on the y-axis. The overall
set of elementary features is used for the creation of the
final two feature vectors per instance: one vector for each
classifier.

The two classifiers used at this point are able to decide
about the normality of the observed behaviour under two
different views:
�
 The first classifier (one-class support vector machine
(SVM)) decides if the short-term behaviour is normal
or not, supplied with feature vectors computed by
taking into account both the background subtraction
and the ground plane information. The features
provided as input describe the short-term motion
information, which we argue that constitute the
short-term behaviour information.
�
 The second classifier is a continuous Hidden Markov
Model (cHMM), also used as one-class classifier, which
supplied with the trajectory of every instance-object.
This classifier can decide whether a given trajectory
follows the model of normal trajectories.
Our method has been implemented to work in two
modes: offline and real-time. In the offline mode, the
decision concerns the classification of a time window
of arbitrary length, which can be used for example for the
characterization of video shots for video retrieval pur-
poses. In its real-time aspect, the system makes a deci
sion in every frame whether to issue alerts as the
events happen. This decision is made by taking into
consideration a time window of relatively small duration
concerning recent camera information (images). This
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aspect can be used for security purposes, aiding a human
supervisor.

In the recognition step, if either classifiers gives
‘‘abnormal’’ characterization as an output, the system
characterizes the scene as abnormal. This means that we
take as output the logical ‘‘or’’ of outputs, given that a
value of true indicates abnormality.

4. Preprocessing

The proposed methodology uses a preprocessing step
that includes background subtraction for moving target
segmentation and then target localization using homo-
graphy information. For the background subtraction, we
adopted the adaptive Gaussian mixture background
model for dynamic background modelling [39]. Similar
or better methods could have been used for the same
purpose, without changing our overall approach, and the
reader is referred to the related literature for further
information.

For target localization we have employed a homo-
graphy-based approach. The planar homographies are
geometric entities whose role is to provide associations
between points on different planes, which are the ground
and the camera planes in our case. In our indoor
environment the target moves on the ground plane, so
mapping between planes is possible. In the following we
explain briefly how the approach works.

The scene viewed by a camera comprises a predomi-
nant plane, the ground. We assume that a homogeneous
Fig. 3. View from three cameras and extraction of the principal axis projection

visible, however, the corresponding accumulator is still created in (d). In (d) th
coordinate system is attached to the ground plane, so that
a point on the plane is expressed as Pp ¼ ðxp1; xp2; xp3Þ

T . If
this point is visible to the camera, which is a matter of
proper camera configuration, the homogeneous coordi-
nates of this point on the camera plane are given by
Pc ¼ ðxc1; xc2; xc3Þ

T . The homography H is a 3� 3 matrix,
which relates Pp and Pc as follows:

Pp ¼ H � Pc 3

xp1

xp2

xp3

264
375 ¼ h11 h12 h13

h21 h22 h23

h31 h32 h33

264
375 � xc1

xc2

xc3

264
375 (1)

Let the inhomogeneous coordinates of a pair of match-
ing points xc ¼ ðxc ; ycÞ and xp ¼ ðxp; ypÞ on the camera
plane (pixel coordinates) and the ground plane corre-
spondingly. Then

xp ¼
xp1

xp3
¼

h11 � xc þ h12 � yc þ h13

h31 � xc þ h32 � yc þ h33
(2)

yp ¼
xp2

xp3
¼

h21 � xc þ h22 � yc þ h23

h31 � xc þ h32 � yc þ h33
(3)

Each point correspondence gives an equation and four
points are sufficient for the calculation of H up to a
multiplicative factor, if no triplet of the used points
contains collinear points. The calculation of H is a
procedure done once offline and in practice many points
are used to compensate for errors.

The positioning of each target is done similarly to [16].
A background subtraction algorithm extracts the silhou-
ettes of the targets, which move on the ground plane.
From each silhouette we extract the vertical principal axis
on the ground plane from two of the cameras. In (c) the projection is not

ree accumulators are visible—two of them very close to each other.
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and we project it on the ground plane by replacing
ðxc ; yc ;1Þ

T and ðxp; yp;1Þ
T in (1). The projection from each

camera casts a ‘‘line’’ on the ground plane as depicted in
Fig. 3. The maxima of those projected lines indicate the
positions of the monitored targets, i.e. where the vertical
principal axis touches the ground. The method is not
strongly affected when the target pose is not vertical,
because a vertical principal axis is still extracted from
silhouettes. In such cases the indicated position is not the
exact position of the feet touching the ground but the one
indicated by the vertical axes, which may be a bit
displaced. However, also in such cases the method still
gives good position estimations.

5. Short-term behaviours

Our first source of information for evaluating beha-
viour is the so-called short-term behaviour. Our metho-
dology represents short-term behaviour with a feature
vector that consists of motion-based features. In the
recognition step an one-class support vector machine is
used, trained only with normal instances.

5.1. Feature calculation

In motion representation and analysis, our methodol-
ogy uses information obtained by preprocessing, namely
the object’s bounding box, the object’s blob and sequential
positions. In Fig. 4, all preprocessing-extracted informa-
tion are illustrated.

Elaborating, from the background subtraction process
we extract the position of the object’s centroid inside the
bounding box, the bounding box’s width and height and
the object’s blob. Figs. 4a–c show the captured frames
from each camera with the corresponding bounding
boxes. Figs. 4d–f show the background subtraction masks,
from where the blob is extracted.

The blob histogram is calculated based on the blob
information. The histogram of the blob indicates the
number of pixels that belong to the blob for every y

coordinate. Figs. 4g–i show the histograms of the given
blob.

From homography estimation we calculate the object
ground position and thus the trajectory which is ex-
pressed as a sequence of ðx; yÞ vectors on the ground plane.
Fig. 4j illustrates the object’s trajectory in the scene,
calculated from all views.

The short-term activity is represented by a seven-
dimensional feature vector, as follows:

f ¼ ðvðtÞ;cvT ðtÞ;RT ðtÞ; FðtÞ;DFðtÞ;maxðDHðtÞÞ;maxðDSDðtÞÞÞ

(4)

The features’ calculation is presented in detail in Table 1,
with the features being separated into four categories
according to what type of information they depend on.
The first two features, speed and algebraic mean speed,
are computationally inexpensive and time efficient calcu-
lated only from trajectory data. Algebraic mean blob
difference is also time efficient calculated only from the
background subtraction data on the object’s bounding
box. Mean optical flow and mean optical flow percentage
difference are derived from simple operations on optical
flow. For these two features we use data from both the
object’s bounding box as well as the full images of the
video sequences. Optical flow is computationally expen-
sive, but is robust and discriminative [14]. The last two
features are computationally inexpensive, and they are
extracted from the blob histogram. We have said that the
histogram reflects the number of the pixels that consist
the foreground object per y coordinate. But, if we weigh
out the histogram with the total number of the histo-
gram’s pixels, we have a probability distribution function
(pdf), pcðyjÞ, that represents the probability of an object’s
pixel to lie in a given coordinate in the bounding box, yj.

Taking into account that features are extracted for
every single video frame and constitute the frame’s
feature vector, we elaborate on the calculations presented
in Table 1.
(1)
 vðtÞ, is the Euclidean norm (over x- and y-axes of the
ground plane) of the instantaneous object’s speed,
calculated from the current frame and the previous
frame object’s position.
(2)
 Algebraic mean speed, cvT ðtÞ, is the algebraic mean
value of an object’s speed within a time window that
consists of the T last frames, including the frame on t0.
This value is calculated based on the algebraic sum of
the x and y coordinates of the speed’s vector, which is
more robust against noise than vðtÞ.
(3)
 On the same grounds, the calculation of mean blob
difference, RðtÞ, is based on the algebraic sum of the
bounding boxes’ area change within a shifting frame
window T 0 comprising the last e.g. 5–10 frames. ðwcðjÞ,
hcðjÞ represent the width and the height of the blob for
camera c for t ¼ j.
(4)
 Optical flow, Fi is first calculated on every frame and
for each camera i, but only for the object’s edges inside
the bounding box. Then, the optical flow value is
normalized by the number of the pixels that partici-
pate in the calculation—which are the pixels of the
edges—and the bounding box area. Then we compute
the mean optical flow value from all cameras.
(5)
 Mean optical flow difference is the difference between
the current and the previous value of the mean optical
flow divided by the previous value. This offers the
percentage of optical flow change. We calculate the
features for each camera and we keep the maximum
value over all cameras.
(6)
 Max entropy histogram difference, maxðDHðtÞÞ; is
based on the Shannon entropy, HðtÞ, that is a measure
of the uncertainty associated with a random variable.
This means that the more a given pdf resembles a
uniform pdf, the greater the entropy value. The main
idea is that when an abrupt motion occurs, the
differences in entropy’s values will be significantly
greater than those of a normal slow motion.
(7)
 Max standard deviation difference, maxðDSDðtÞÞ, is
also calculated from the object blob’s histogram.
Standard deviation of the histogram (std) is a measure
of the spread of its values. The change on a
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Histogram of the object’s blob for each camera. (j) Trajectory formed by the calculated ground points.
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histogram’s standard deviation value from one point
of view,DSDðtÞ, can give us important information for
the motion of the object in that it indicates within-
bounding-box movement. We calculate the features
for each camera and we keep the maximum value over
all cameras as the final feature value.
5.2. Short-term behaviours classification

The decision whether a short-term behaviour is normal
or not can be taken by employing an one-class SVM as
proposed by Scholkopf [31]. The selected model does not
require a labelled training set to determine the decision
surface. The one-class SVM is similar to the standard SVM
in that it uses kernel functions to perform implicit
mappings and dot products and that the solution is only
dependent on the support vectors. Such an approach can
be justified by the fact that normal behaviours are easier
to observe and thus whatever deviates from them can be
defined as abnormal. Thus we do not need to model
explicitly abnormal behaviours and we do not need
labelling of data, as long as our assumption on the
sparsity of abnormality stands. This is what makes this
approach unsupervised.

The one-class SVM builds a boundary that separates
the training data class from the rest of the feature space.
For more details the reader is referred to [23].
6. Trajectories classification

Our second information source for evaluating beha-
viour is the trajectory. In a museum scenario, the
trajectory of a person entering from the designated
entrance, then approaching the cashier to buy a ticket,
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Table 1
Features calculated and used for classification.

Features Type

1. Speed
vðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðtÞ � xðt � 1ÞÞ2 þ ðyðtÞ � yðt � 1ÞÞ2

q
2. Algebraic mean

speed cvT ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Pt
i¼t�Tþ1

vxðiÞ

 !2

þ
1

T

Pt
i¼t�Tþ1

vyðiÞ

 !2
vuut

3. Algebraic mean

bounding box

difference

RðtÞ ¼

PnumCam
i¼1 RiðtÞT 0

numCam
where

RcðtÞT 0 ¼
1

T 0
Pt

j¼t�T 0þ1

wcðjÞ � hcðjÞ �wcðj� 1Þ � hcðj� 1Þ

wcðj� 1Þ � hcðj� 1Þ

4. Mean optical flow
FðtÞ ¼

SnumCam
i¼1 Fi

numCam
whereFi is the normalized

optical flow from camera i

5. Mean optical flow

difference
DFðtÞ ¼

FðtÞ � Fðt � 1Þ

Fðt � 1Þ
6. Max entropy

difference
maxðDHðtÞÞ ¼ maxi

HiðtÞ � Hiðt � 1Þ

Hiðt � 1Þ
, with

1pipnumCam where HcðtÞ ¼ �
PN
j¼1

pcðyjÞ �

log pcðyjÞ with pcðyjÞ the histogram value in yj

location for camera c and N the bounding box’s

height

7. Max standard

deviation
maxðDSDðtÞÞ ¼ maxi

stdiðpiðyÞtÞ � stdiðpiðyÞt�1Þ

stdiðpiðyÞt�1
,

difference with 1pipnumCam
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then browsing into the room and looking around, and
finally exiting from the designated exit should be
characterized as normal. Trajectories of persons entering
from the exit without first visiting the ticket stand, or
going the wrong direction should be labelled as abnormal.

Some works in literature use rules to define the
restricted areas and therefore distinct normal from
abnormal trajectories. We apply an one-class learning
strategy, as in the short-term behaviours, by training our
time series classifier using only the normal trajectories.
Each sample is a position vector ðx; yÞ of the target in the
global coordinate system in each frame (calculated as
described in Section 4). The extracted normal trajectories
(sequences of ðx; yÞ vectors) are used for training a
continuous Hidden Markov Model [29] and constitute
the model observations.

For convenience, we use the compact notation l ¼
ðA;B;pÞ to indicate the complete parameter set of the
model, where:
�
 A is the state transition probability distribution matrix.

�
 B is the observation probability density function per

state matrix.

�
 p is the initial state probability distribution.

The original Baum Welch algorithm is used for the
training step, while for the recognition step we propose
a modified Forward Backward procedure (see Section 6.2).
The methodology presented here proposes solution to two
problems:
�
 the use of the Hidden Markov Model as an one-class
classifier.
�
 the efficient likelihood calculation in the forward–-
backward for long sequences, taking into account
current machine limitations.
6.1. One-class continuous Hidden Markov Model

The problem of discriminating between normal/abnor-
mal trajectories concerns the definition of a measure that
would give sufficiently different values for the two classes.
The variable length of the trajectories poses additional
difficulties. Long, normal trajectories would have cHMM
generation probability values comparable to small values
of short, abnormal trajectories, so the observation’s length
factor needs to be removed.

If we can prove that for a normal observation sequence
ðOnormalÞ and for an abnormal one ðOabnormalÞ the following
condition must hold:

log PðOabnormaljlÞ
lengthðOabnormalÞ

5
log PðOnormaljlÞ
lengthðOnormalÞ

(5)

then we will be able to use it as a classification measure.
In (5) the logarithms help us sharpen the differences
between values below 1, and the division with the
sequence’s length normalizes the computed measure.

The anomaly detection problem begins with the
definition of ‘‘what can be labelled as normal’’. We may
define as normal the trajectories that between two time
instances t and t þ 1, the probabilities of the correspond-
ing observations are proportional to each other, and their
fraction can be viewed as a random variable D. Taking into
consideration that Ot is the observation sequence from
time ¼ 0, until time ¼ t, the random variable D depends
only on the model, lðA;B;pÞ [29].

Thus, given the model and two consecutive observa-
tions Ot , Otþ1, there is a variable D, with an expected value
d ¼ E½D� such that

PðOtþ1Þ ’ d � PðOtÞ )
PðOtþ1Þ

PðOtÞ
’ d (6)

with 0ot þ 1pT . This assumption is derived by the facts
that:
�
 D depends only on the model;

�
 normal trajectories have a high probability of being

generated by the model;

�
 the expected value represents the average amount one

‘‘expects’’ as the outcome of the random trial when
identical odds are repeated many times.
We can also see that, 0odp1 because PðOtþ1ÞpPðOtÞ.
According to (6), we can expand the calculations as

follows:

PðOtþ1Þ ’ d � PðOtÞ ) PðOtþ1Þ ’ dt
� PðO1Þ

) log PðOtþ1Þ ’ t � logdþ log PðO1Þ

)
log PðOtþ1Þ

t þ 1
’

1

t þ 1
� ðt � log dþ log PðO1ÞÞ
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which results after replacing t with t � 1 in the following:

log PðOtÞ

t
’

1

t
� ððt � 1Þ � logdþ log PðO1ÞÞ; 8t : 0otpT

(7)

As abnormal, we define the trajectories for which the
probability of their corresponding D value will be very
low. For those trajectories, we assume that there exists a
transition from time k to time kþ 1 where, due to either
the transition probability aij or the observation probability
bjðOÞ, the D value probability (i.e. the probability to have
such a D value for the given model) decreases signifi-
cantly, because the value of Dkþ1 for the given time point
kþ 1 becomes lower than expected:

9k :
PðOkþ1Þ

PðOkÞ
¼ Dkþ1; pðDÞ51; Dkþ15d (8)

Before that k, the trajectory can be characterized as
normal i.e.

8t : tok;
PðOtþ1Þ

PðOtÞ
¼ d (9)

From the above we have

PðOkþ1Þ ¼ logDkþ1 þ logðdl�1
� PðO1ÞÞ

)
log PðOkþ1Þ

kþ 1
¼

1

kþ 1
� ðlogDkþ1

þ ðk� 1Þ � log dþ log PðO1ÞÞ (10)

For the discrimination problem (see Eq. (5)), the following
must hold:

log PðOkþ1Þ

kþ 1
5

log PðOkÞ

k
(11)

By letting t ¼ k in (7) and using (10) in (11) we have

1

kþ 1
� ðlogDkþ1 þ ðk� 1Þ � log dþ log PðO1ÞÞ

5
1

k
� ððk� 1Þ � log dþ log PðO1ÞÞ (12)

Because k represents time, k40. On the other hand Dkþ1

and d represent the value of the probabilities’ ratio, so
0oDkþ1; do1. According to that remark we can assume
that for sufficiently large sequences, e.g. for kp10, 1=k ’

1=ðkþ 1Þ in (12) due to the fact that log d; log d51. Thus,
Eq. (12) can be

logDkþ1 þ ðk� 1Þ � log dþ log PðO1Þ5ðk� 1Þ � logdþ log PðO

) logD50 (13)

Since Dkþ15d, Dkþ1 is a sufficiently small value that gives
logDkþ150. Given that (13) is valid, the initial assump-
tion, Eq. (5), is true. Therefore, (5) can be used as criterion
for abnormal trajectory detection.

6.2. Log likelihood approximation in long sequences

As mentioned previously, the continuous Hidden
Markov Models have problems with long sequences. This
is due to the multiplications in the Forward Backward
algorithm, which is used to calculate the observation
probability given the model. The constant decrease of the
observation probability results to a very low value, which
end up underflowing current computers’ number storage.
Solutions like sampling the trajectory, only partially solve
the problem.

In order to tackle the problem, one may rescale the
conditional probabilities using carefully designed scaling
as proposed in [29]. We, however, have devised a method
for the approximation of the log-probability of a long
sequence that gives the advantage of computational
simplicity and in parallel keeps the properties required
for normal and abnormal trajectories’ classification (Eq.
(5)). Our approximating methodology avoids the calcula-
tion of the scaling factor and uses integer instead of real
values. We have named this method observation log-

probability approximation (OLPA).
Given the trained continuous Hidden Markov Model

and within the recognition step, in order to compute the
probability of a known observation sequence the Forward
Backward algorithm is used [29]. This algorithm consists
of the following steps:
(1)
 Initialization: a1ðiÞ ¼ pi � biðO1Þ.P

(2)
 Induction: atþ1ðjÞ ¼ ½

N
i¼1atðiÞaij�bjðOtþ1Þ.P
(3)
 Termination: PðOjlÞ ¼ N
i¼1aT ðiÞ.
To compensate for the constant decrease in the like-
lihood in long sequences we modified the above algorithm
so that instead of multiplications we use additions of
logarithms. Some background assumptions are given next.

By definition if bxc is the floor of x number,
j loga� blogacjo1. Thus, we can approximate
log PðOjlÞ=lengthðOÞ with blog PðOjlÞc=lengthðOÞ. Now, due
to the fact that for long sequences a � PðOjlÞ is below 1
and that loga!�Infinity, one may assume that
loga ’ blogac. This approximation is acceptable, because
the estimation error is bounded (less than 1). Long normal
sequences give small values of cHMM probabilities, due to
successive multiplications, making the logarithm of those
probabilities to be too high to let the 1 to be damaging.
Assuming this approximation is acceptable, it can be
inserted to Forward Backward algorithm.

First, we define functions necessary for computations
in cHMM algorithms, using logarithms:

blogða � bÞc ¼ blog aþ log bc ’ bblog ac þ blog bcc

¼ blog ac þ blog bc

Additionally the following applies for a sequence of xi,
the bigger of which is xmax:

xmaxp
X

xipn � xmax

) logðxmaxÞp log
X

xi

� �
p logðnÞ þ logðxmaxÞ

The order of magnitude for xi is 10�9 or less and for n is
10, so logð

P
xiÞ ’ maxiðlogðxiÞÞ or

blogð
P

xiÞc ’ bmaxiðlogðxiÞÞc.
According to all the above we can conclude to a

modification of Forward Backward algorithm, using the same
dynamic programming idea: let Loga � blog ac, and ~a be the
approximated a, then the following approximations apply:
�
 ~a1ðiÞ ¼ Logðpi � biðO1ÞÞ ¼ blogpi þ log biðO1Þc
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X

�
 ~atðiÞ ¼ Logðð

N

j¼1
at�1ðjÞ � aijÞ � bjðOtÞÞ

¼ blogðð
XN

j¼1
at�1ðjÞ � aijÞ � bjðOtÞÞc

¼ blogð
XN

j¼1
at�1ðjÞ � aijÞ þ log bjðOtÞc

’ blogð
XN

j¼1
at�1ðjÞ � aijÞc þ blog bjðOtÞc

’ maxjðblogat�1ðjÞ � aijcÞ þ blog bjðOtÞc

’ maxjðblogat�1ðjÞ þ log aijcÞ þ blog bjðOtÞc

’ maxjðblogat�1ðjÞc þ baijcÞ þ blog bjðOtÞc

¼ maxjð ~at�1ðjÞ þ blog aijcÞ þ blog bjðOtÞc

X

�

~PðOjlÞ ¼ Logð

N

i¼1
aT ðiÞÞ

¼ blog
XN

i¼1
aT ðiÞc

’ maxiðblogaT ðiÞcÞ

¼ maxi ~atðiÞ
According to the above approximations, we can express
the algorithm as follows.
(1)
2

i

Initialization: ~a1ðiÞ ’ blogpic þ blog biðO1Þc.

(2)
 Induction:

~atðiÞ ’ maxjð ~at�1ðjÞ þ blog aijcÞ þ blog bjðOtÞcÞ.

(3)
 Termination: ~PðOjlÞ ’maxi ~atðiÞ.
This observation log-probability approximation helps us
overcome the problem of consecutive multiplications, by
making it possible to use sum of integers. Our achieved
goal was to be able to calculate an approximation of the
probability of a long sequence that would otherwise be
impossible to compute, due to machine limitations.

7. Experiments

As a scene for our experiments we have used our lab,
where we installed three cameras, as illustrated in Fig. 5a,
and there we tried to simulate some common scenarios.2

We have simulated a protected exposition room, where
only one visitor is allowed and he or she has to follow a
certain path for entering and exiting. Also, only certain
short-term behaviours are allowed. As short-term beha-
viour we label the action taken by a single person within a
time period of 25 frames that correspond approximately
to 1 s in real world. An artificial barrier inserted in the
scene does not allow entering the experiment area from a
certain side and there also exists an ‘‘emergency exit’’.
When someone visits areas which are not allowed, we
consider to have a case of abnormal activity (see Fig. 5b).
Similarly, when areas are visited in the wrong order (e.g.
entering from the exit or exiting from the entrance)
according to the modelled continuous Hidden Markov
Model, this activity is also labelled as abnormal. Further-
more, we consider normal short-term activity to be
something like ‘‘walking’’, ‘‘standing still’’ or ‘‘active’’
and in no case ‘‘running’’ or ‘‘abrupt motion’’. The
The custom corpus used within our experiments can be made

lable to any interested party, via e-mail correspondence.
experiments measure the performance of two variations
of our process, namely the offline and the real-time
process.

Our cameras are the AXIS 214PTZ (network cameras),
from which the frames are received through HTTP
requests. The communication with the cameras is per-
formed through an IP network. For frame synchronization
we used a Network Time Protocol (NTP) server which
gives time stamps to each frame, so the closest frame
triplet is considered to match a single time frame.

In our system, we use the LibSVM [8] library to train an
one-class SVM model with a radial basis function (RBF)
kernel. The training set consists of feature vectors of
normal behaviours only. The radial basis function has been
chosen based on experimental results, where we had used
all the alternatives (polynomial, linear, sigmoid). SVM
parameters were also optimized through trial and error.

In order to calculate the features associated with the
optical flow, many restrictions were taken into considera-
tion and various normalizations were applied, to avoid
noise and reduce the computational cost. Problems were
mainly due to our baseline background subtraction, as
well as to the noise in the cameras’ unfiltered image data.

To the end of reducing the computational cost, we have
limited the optical flow’s calculation only in the fore-
ground regions. We have also used edge detection to avoid
noise in the extraction of the optical flow. It is well known
that the optical flow vectors may have high values in
background regions that become unoccluded by a moving
target, even though these regions do not move at all. This
would significantly affect our classification scheme and
had to be avoided. To overcome this problem, we have
applied the Canny method for edge detection [25] within
the blobs’ boundaries (see Fig. 6). Then, we have
calculated the optical flow only for the pixels belonging
to these edges.

Due to the complex background, edges from the
background added noise to our calculations, thus we have
made use of some of the first frames from each video in
order to extract background edges and subtract them from
the final optical flow calculation. This choice is justified by
the fact that we expect to have the highest amount of
optical flow around the edges, while the optical flow is
expected to be low within homogeneous regions, thus the
most useful information for our classification is not lost. In
Fig. 6, you can see all the processing steps described here.
It should be noted that the learning process based on the
first few frames can be considered as part of the initial
system calibration (also see Section 4).

As already indicated, the background in our input data
was natural (non-uniform) and we had to deal with noise.
In our experiments we used classic surveillance cameras
with low resolution ð352� 288Þ, while the images
captured were compressed with JPEG compression meth-
od, resulting to loss of image quality and to the creation of
artifacts that sometimes affected the background subtrac-
tion. Therefore, we used the a priori knowledge of a
human target’s size in order to avoid bounding boxes of
inexact sizes. The trivial rule used was that the bounding
box can have a maximum width and height and all other
bounding boxes were to be omitted. The threshold for
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Fig. 6. (a) Foreground object inside its bounding box. (b) Edges extracted

with Canny inside the bounding box. (c) Edges extracted with Canny

inside the box without the edges of the background.

Fig. 5. (a) View of our experimental room (exposition room). (b) Normal and abnormal trajectory example. In the latter the target goes over the barrier.

3 We have used the JaHMM library [13].
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considering the size of a bounding box as acceptable was
experimentally determined. Obviously, this heuristic is
dependent on the input video and has serious defects, for
example in the case where a target human lies on the floor
or extends his hands. A more robust approach for back-
ground detection and removal should be used to eliminate
the limitations posed.

In order to determine which of our features were the
most promising for the desired classification setting we
used a subset of our data, where both normal and
abnormal instances had been labelled. Using an informa-
tion gain criterion and a 10-fold cross validation metho-
dology, we have found that the most promising feature is
the max entropy difference (see Table 1 in Section 5.1). The
overall ranking of the other features based on the
information gain criterion is: algebraic mean speed, max
standard deviation difference, speed, mean optical flow,
algebraic mean blob rate and mean optical flow rate. Of
course the labelled data were only used in this process,
which we hoped would offer more intuition on what
features offer higher discriminative potential.
7.1. Testing the one-class cHMM assumption

To see whether the PðOtþ1Þ=PðOtÞ ratio for normal
trajectories can be described based on a predefined
probability density function, that can in turn be repre-
sented by its expected value, we trained a cHMM model
with normal trajectories only.3 Then, we generated several
sequences O using this cHMM. These sequences should
obviously be considered normal. We then calculated the
ratio PðOtþ1Þ=PðOtÞ for all values of t, i.e. all subsequences
of individual O sequences. In Fig. 7 we show the results of
the logarithm of probabilities log PðOtþ1Þ=PðOtÞ to offer
more detail, since the magnitude of the probability values
is very low. What Fig. 7 shows is that a normal
distribution appears to offer a good approximation of
the actual distribution of ratio values, even though the
ratio values appear to be bounded.
7.2. OLPA performance

For long observation sequences we expect, based on
the analysis in Section 6.2, that our probability calculation
algorithm (OLPA) will give us results strongly correlated to
the results the Forward Backward procedure returns.
Experiments show that, indeed, the Forward Backward
algorithm and the OLPA algorithm have strongly corre-
lated results in short observation sequences as well. We
have performed a t-test to show that the mean values of
the distributions of the normalized-log P (returned by the
Forward Backward algorithm) and normalized-Log P (re-
turned by OLPA) are the same within statistical error
ðp-valueo0:05Þ. Additionally, we have calculated Pearson
and Kendall correlation (to allow for non-Gaussian data)
between the two probability estimations and, as is
illustrated in Fig. 8, the samples of the two distributions
are very strongly correlated ð40:98Þ, with a p-value much
lower than the usual threshold of 0.05.
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Fig. 7. Fraction of logarithms of cHMM probabilities in normal trajectories.

Fig. 8. Correlation between samples of the two distributions, normalized

log P (Forward Backward algorithm) and normalized Log P (OLPA).
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Our next experiments were performed in two steps,
offline training and testing, and real-time testing.
7.3. Offline experiments

We have performed a 10-fold cross validation method
to test the effectiveness of our system using the offline
approach. Fifteen videos with normal and five videos with
abnormal behaviours were captured. Each of the videos
lasts between 3000 and 6000 frames and contains one to
five different long-term behaviours, resulting in a total of
42 normal behaviours and 22 abnormal behaviours. Each
behaviour has been performed by one of three different
actors, through random selection. Out of the 22 abnormal
behaviours, 14 are abnormal based on the motion features
(e.g. abrupt motion) and 19 are abnormal based on the
trajectory—which means that some behaviours are ab-
normal for both criteria used. It should be noted that the
same activities performed by different actors can differ
greatly. The videos with normal behaviours illustrate a
person entering the room, buying a ticket, browsing and
looking around for several minutes and exiting the room
using a preset path. The abnormal behaviours consist of
running, abrupt motion or unexpected trajectory.

Our experiments, for offline testing, consist of a test set
formed by four normal behaviours per fold, as well as 22
abnormal behaviours that were used in all the folds. In the
offline procedure each classifier makes a decision of the
whole behaviour’s abnormality. The system signals ab-
normality if any of the constituent classifiers has indicated
abnormality.

The final decision of the observed behaviour’s abnorm-
ality is taken by thresholding both classifiers’ (SVM and
cHMM) outputs. The thresholds are automatically calcu-
lated in the training step, which takes place offline before
the operation of our system. To be more specific, during
the training step, videos with normal behaviours are input
to the system, features are calculated and two classifier
models (one-class SVM and cHMM) are trained and
stored. Then, using n-fold cross validation to ascertain
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Fig. 9. (a) Percentage normality in normal and abnormal behaviours for support vector machine. (b) Output of continuous Hidden Markov Model for

normal and abnormal behaviours. Black colour is for normal behaviours and red for abnormal behaviours. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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generality, the cHMM’s output probabilities are stored in
order to be processed and used to extract the thresholds
based on distributional characteristics (mean value,
standard deviation and minimum value; also see
Eq. (14)). For the decision concerning the SVM classifier,
we also extract a threshold which indicates the maximum
number of abnormal frames we allow within a normal,
predefined length sequence of frames. Therefore, SVM
decisions are also used to determine this second thresh-
old. At this point the system is considered to be calibrated.
In case someone wishes to apply the system at a different
location, only the training step needs to be repeated and
the system will be applicable to the new environment.

The experiments prove that the system is highly
automated, as minimum human interference is needed
during the training step and the results are very encoura-
ging. We remind the reader that in the background
subtraction step the first 250 frames are used for training,
where no person is inside the scene. Those frames are
used to extract the background edges (also see Section
5.1). Features identifying short-term behaviour are ex-
tracted and used to train an one-class SVM with a radial
basis function kernel. Simultaneously, trajectories were
extracted in order to be inserted into a continuous HMM
for training.

The threshold values have been calculated based on
the training test. In Fig. 9, distributions of SVM and cHMM
outputs for normal as well as abnormal behaviours are
shown. Fig. 9a depicts the normality percentage for
normal and abnormal behaviours within a time window
that includes the whole behaviour, i.e. how many feature
vectors are recognized as normal in the entire behaviour.
We used a t-test in order to ensure that the two density
functions are different and the resulted p-value was o1%.
Because of the fact that the two pdfs are not Gaussian, we
have also applied the Kolmogorov–Smirnov test or KS-test
[3] that does not require normal pdfs. The Kolmogor-
ov–Smirnov test indicated that, indeed, the normal and
abnormal samples come from different pdfs
ðp-value ¼ 2:09e� 07Þ. Fig. 9b shows the cHMM’s output
for normal and abnormal behaviours. The two tests (t-test
and KS test) were also applied to these results with both
p-values substantially below 1%. According to the remark
that normal and abnormal pdfs are different for both
classifiers, thresholding their outputs was a logical
decision.

For SVM-based classification we set the threshold to be
the following function of the mean and the standard
deviation of the distribution of the number of allowed
abnormal frames within a normal sequence:

thresholdSVM ¼ meanðHsvmnormalÞ � 2:5 � stdðHsvmnormalÞ

(14)

For HMM outputs the minimum value of the distribu-
tion of normalized log-probabilities of the normal in-
stances was considered to be the threshold value that
separates normal trajectories from the abnormal ones:

thresholdHMM ¼minðHhmmnormalÞ (15)

where Hsvm is the histogram of SVM’s outputs and
Hhmm is the histogram with HMM’s outputs.

7.4. Real-time experiments

In both the online and offline approaches the same
training set (therefore the same models) and thresholds
have been used. The only difference is that in the online
approach we had the system emit a decision for every
frame instead of for the whole behaviour. The system
performance in both approaches is encouraging, as will be
shown in the following paragraphs.

Real-time experiments follow a slightly different
approach. Each frame is labelled as normal or abnormal
depending on both classifiers’ decision. All the videos
contain 34 479 normal frames, i.e. frames for which the
behaviour should be judged as normal, and 5260
abnormal frames. From the 4537 frames 1251 have
motion-based abnormality and 4537 have trajectory-
based abnormality. The SVM classifier classifies a frame,
but the SVM-based decision also takes into account the
labels of the previous 24 frames, based on the percentage
of abnormal frames within this history of 25 frames. The
cHMM returns a normalized log-probability value which
characterizes the object’s sampled trajectory since the
object’s first appearance in the scene and up to the current
frame. The final system result for each frame is the logical
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Table 4
Precision and recall of the single-camera system, when applied on the

CAVIAR dataset.

Offline overall Real-time overall

Precision Recall Precision Recall

Normal 0.8882 0.775 0.7625 0.7309

Abnormal 0.3129 0.5125 0.2273 0.2582
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‘‘or’’ of these two outputs, where the value ‘‘true’’
indicates a decision of abnormality for a given frame.

7.5. Overall system performance

Precision and recall have been calculated for the offline
and the real-time experiments. For each approach we give
the performance for both the SVM and HMM classifier
models separately, as well as for the whole system in Table
2.

Even though the overall system performance is very
satisfactory, we should note that the precision of motion-
based abnormal instances, through the use of the SVM
classifier, appears to be low. This indicates that we should
further optimize SVM parameter values to the given
classification problem, as it has been seen in literature
that SVM performance can be highly dependent on the
selected parameters. However, the simultaneous use of
both classifiers helps the system perform highly for the
given dataset.

7.6. Multiple cameras vs. one camera

To clarify the reasons for using multiple cameras
instead of one camera, we have performed a set of
experiments only with the data of one camera from our
lab dataset. The system’s results (precision and recall) are
shown in Table 3. As we can see the system’s performance
is lower than the one produced by multiple cameras, due
Table 2
Precision and recall for the 3-camera system on our dataset.

SVM HMM Overall

Precision Recall Precision Recall Precision Recall

Offline

Normal 0.9048 0.9286 1 0.9762 1 0.9286

Abnormal 0.7674 0.7071 0.95 1 0.88 1

Real-time

Normal 0.9875 0.9228 0.9960 0.9770 0.9960 0.9105

Abnormal 0.2419 0.6788 0.8478 0.9704 0.8478 0.9375

The column ‘‘Overall’’ indicates the performance of the combined

decision.

Table 3
Average precision and recall for the single-camera system on our dataset.

SVM HMM Overall

Precision Recall Precision Recall Precision Recall

Offline

Normal 0.9788 0.8375 1 0.95 1 0.8

Abnormal 0.6708 0.9464 0.913 1 0.7366 1

Real-time

Normal 0.9945 0.9148 0.9953 0.9597 0.9975 0.8525

Abnormal 0.2696 0.8569 0.7544 0.9637 0.5042 0.9861
to the fact that one camera is not able to give as robust
ground point estimation of the object as the estimation
given by multiple cameras. Moreover, multiple cameras
provide the benefit of more information, especially in the
case where the object is not within the view of one of the
available cameras.

It is worth pointing out that in Table 3 we average
precision and recall taking into account two of our three
cameras, due to the fact that the third camera could not
give us proper output since the object was frequently out
of its view. The multi-camera system overcomes this
problem by compensating for any missing camera data. In
addition, as we can observe from Tables 2 and 3, cHMM
precision and recall in both offline and real-time experi-
ments, are greater with multiple cameras than with only
one camera. On the other hand, precision and recall in
both offline and real-time experiments for SVM are in
most cases higher in the single camera system than in the
multi-camera system. These observations have led us to
two main conclusions. The first is that our assumption
that multiple cameras provide us with a more precise
position of the object (more accurate trajectory) is correct.
The second is that our application of trivial fusion of
motion data from different cameras—we just calculated
mean feature values over the three cameras—can cause a
decrease of performance and should be avoided. Future
work should research how motion feature values from
different cameras should be combined.

In order to further allow for solid comparison, we have
chosen to use a commonly used dataset for additional
comparisons. The corpus chosen is the set of video
sequences available for result comparison from the
PETS04 workshop [12]. The sequences have already been
used by the CAVIAR project. The system’s performance
when applied on these data is depicted in Table 4. It is
worth mentioning that:
�
 the scenarios in this dataset are different from the
scenarios we have assumed.

�
 no restricted areas have been defined therefore cHMM

performance is not included in the results, since the
results of the cHMM indicated normal trajectories and
were, therefore, useless.

�
 in the CAVIAR dataset, there is no explicit definition of

normality and abnormality. Thus, we have considered
‘‘running’’ and ‘‘fighting’’ to be abnormal, while all the
rest were considered to be normal.
From the CAVIAR dataset we have used only videos from
a single camera view. There were 11 normal behaviour
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videos4 and 4 abnormal.5 The extracted different beha-
viours were a total of 43 normal and 8 abnormal ones. The
number of frames was 12 188 normal and 2669 abnormal.

In the CAVIAR dataset evaluation of performance, the
detection of abnormal behaviour appears to be more
difficult than in our dataset. Given this difference in
performance, we have sought the reasons for the decrease
in efficiency and found some possible causes. In our use of
the CAVIAR dataset, we used the whole videos described
as cases of ‘‘walking’’, ‘‘browsing’’ and ‘‘meeting’’ as input
for normal behaviour. We then discovered that a quick
(running) motion can be found within a walking video,
inducing noise in the discriminative ability of the speed-
based features. Then we saw that occlusion may have
caused problems, due to the fact that there are data from
only one camera. The edge-detection process and the
optical flow extraction fail when, for example, two people
are too close the each other and fighting. In these cases
the positioning of the targets with respect to the camera
highly affects the method concerning the use of optical
flow, but only when a single camera is used. The use of
three cameras and proper fusion of information may offer
better optical edge detection and, thus, optical flow
values. The two identified problems partially explain the
loss of recall for abnormal instances, even though more
experiments should be conducted to verify these findings.
One final comment would be that abnormality in such
actions as fighting can be detected much more easily if
one uses interaction information between actors, which
was not within the scope of this work.

8. Conclusion and future work

In this paper, we have presented a set of theoretical
and practical tools for the domain of behaviour recogni-
tion, which have been integrated within a unified,
automatic, bottom-up system based on the use of multiple
cameras performing human behaviour recognition in an
indoor environment, without a uniform background. The
approach’s innovation is fourfold:
�

me

get

Dow
We propose the application of two different criteria of
human behaviour’s abnormality used within a single
methodology that needs only normal data for training.

�
 We have proven that the application of multiple

cameras can be fruitful, when it comes to determining
abnormality based on the trajectory.

�
 We have presented a methodology that lets a contin-

uous Hidden Markov Model function as an one-class
classifier, with very promising experimental results.

�
 We have accomplished to offer an alternative to the

Forward Backward algorithm for the recognition step
of cHMMs in order to overcome arithmetic underflow
in the case of very long observation sequences, without
loss of precision.
4 Namely the normal videos were: browse1-browse4, wk1-wk3,

etSplit3rdGuy,meetWalkSplit,meetWalkTogether1-meetWalkTo-

her2.
5 Namely the abnormal videos were: FightChase, FightOneMan-

n, FightRunAway1-FightRunAway2.
performance of the system in the task of recognizing

Our experimental results demonstrated the good

human behaviour’s abnormality in a somewhat noisy
environment, with different scenarios of action and
participation of different actors. The experiments were
implemented in offline and real-time conditions, with
similar results, implying the robustness of the method.
Furthermore, experiments with a single camera version of
the system provide us the incentive to consider another,
more robust method for the fusion of data in order to
improve performance.

The multiple camera methodology has, so far, been
tested on scenarios with only one object inside the scene,
without taking account any interactions between actors. It
would be worthwhile to further investigate the effective-
ness of our system using more features, such as the
distance of the object from each camera, in order to
improve the motion-based discriminatory performance of
the system. However, other methodologies could also be
tested in the place of the SVM classifier.
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