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Abstract We present a novel 3D shape descriptor that uses
a set of panoramic views of a 3D object which describe the
position and orientation of the object’s surface in 3D space.
We obtain a panoramic view of a 3D object by projecting it
to the lateral surface of a cylinder parallel to one of its three
principal axes and centered at the centroid of the object. The
object is projected to three perpendicular cylinders, each one
aligned with one of its principal axes in order to capture the
global shape of the object. For each projection we compute
the corresponding 2D Discrete Fourier Transform as well
as 2D Discrete Wavelet Transform. We further increase the
retrieval performance by employing a local (unsupervised)
relevance feedback technique that shifts the descriptor of
an object closer to its cluster centroid in feature space. The
effectiveness of the proposed 3D object retrieval methodol-
ogy is demonstrated via an extensive consistent evaluation in
standard benchmarks that clearly shows better performance
against state-of-the-art 3D object retrieval methods.
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1 Introduction

Content-based 3D object retrieval is an active research field
that has attracted a significant amount of interest in recent
years. This is due to the increasing availability of 3D objects
through public or proprietary databases, as even novice users
can create 3D models from scratch with user-friendly mod-
eling interfaces such as Teddy (Igarashi et al. 1999), Google
SketchUp (Google SketchUp 2009), ShapeShop (Schmidt
et al. 2005) and others (Olsen et al. 1999). Applications such
as CAD, computer games development, archaeology, bioin-
formatics, etc. are also playing a major role in the prolifer-
ation of 3D objects. A second source of 3D objects is 3D
scanners, which are constantly gaining users as their price
drops.

Already, 3D object search engines have been developed
for commercial or research purposes that offer searching us-
ing 3D object queries or keyword-based queries. The former
approach, which is an instance of content-based retrieval
(CBR) alleviates various limitations that are encountered
in keyword-based retrieval which become prohibitive as the
number of 3D objects increases.

In CBR, each 3D object is represented by a shape-
descriptor which is used to measure the similarity between
two objects. The shape descriptor should capture the dis-
criminative features of a 3D model, have a compact size and
permit fast extraction and comparison time.

In this paper, we propose a novel 3D shape descriptor that
exhibits top performance by using a set of features which
are extracted from a set of panoramic views of a 3D ob-
ject. The proposed descriptor is called PANORAMA which
stands for PANoramic Object Representation for Accurate
Model Attributing. The panoramic views are used to cap-
ture the position of the model’s surface in 3D space as well
as its orientation. We obtain a panoramic view of a 3D object
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by projecting it to the lateral surface of a cylinder aligned
with one of the object’s three principal axes and centered
at the centroid of the object. The object’s principal axes are
determined during the rotation normalization step. The ob-
ject is projected onto three perpendicular cylinders, each one
aligned with one of its principal axes in order to capture the
global shape of the object. For each projection, we com-
pute the corresponding 2D Discrete Fourier Transform as
well as 2D Discrete Wavelet Transform. To further enhance
the retrieval performance, we employ a local relevance feed-
back (LRF) technique (Papadakis et al. 2008b) that shifts the
descriptor of an object closer to its cluster centroid in fea-
ture space. The employed LRF technique is unsupervised
and assumes that the k nearest neighbors of an object be-
long to the same class, without requiring any feedback from
the user. We demonstrate the increased performance of the
PANORAMA descriptor by comparing it to other state-of-
the-art approaches in standard benchmarks and promote the
application of the LRF technique by showing the perfor-
mance gain that is obtained when it is combined with the
PANORAMA descriptor.

The remainder of the paper is organized as follows: In
Sect. 2, we provide an overview of the related work in the
area of content-based 3D object retrieval (Sect. 2.1) and
discuss previous work that incorporates relevance feedback
(Section 2.2). In Sect. 3, we give the detailed description
for the extraction of the proposed 3D shape descriptor and
in Sect. 4, we describe the procedure of the employed LRF
technique. The results of an extensive consistent evaluation
of the proposed methodology are presented in Sect. 5 and
conclusions are drawn in Sect. 6.

2 Related Work

2.1 Shape Ddescriptors

In this section, we provide an overview of the related work
in the area of 3D shape descriptors for generic 3D object re-
trieval. 3D object retrieval methodologies that rely on super-
vision are beyond the scope of this review, since this paper
focuses mainly on enhancing the effectiveness of retrieval
by using discriminative shape features in an unsupervised
context.

Content-based 3D object retrieval methods may be clas-
sified into two main categories according to the spatial di-
mensionality of the information used, namely 2D, 3D and
their combination. In the following sections, we review the
state-of-the-art for each category.

2.1.1 Methods Based on 2D Representations

In this category, shape descriptors are generated from
images-projections which may be contours, silhouettes,

depth buffers or other kinds of 2D representations. Thus,
similarity is measured using 2D shape matching techniques.
Surprisingly, extended state-of-the-art reviews such as Shi-
lane et al. (2004) and Bustos et al. (2005) show that descrip-
tors belonging to this class exhibit better overall retrieval
performance compared to descriptors that belong to the sec-
ond class.

Chen et al. (2003) proposed the Light Field descriptor,
which is comprised of Zernike moments and Fourier coeffi-
cients computed on a set of projections taken from the ver-
tices of a dodecahedron. Vranic (2004) proposed a shape
descriptor where features are extracted from depth buffers
produced by six projections of the object, one for each side
of a cube which encloses the object. In the same work, the
Silhouette-based descriptor is proposed which uses the sil-
houettes produced by the three projections taken from the
Cartesian planes. In Passalis et al. (2006), proposed PTK, a
depth buffer based descriptor which uses parallel projections
to capture the object’s thickness and an alignment scheme
that is based on symmetry. Shih et al. (2007) proposed the
elevation descriptor where six depth buffers (elevations) are
computed from the faces of the 3D object’s bounding box
and each buffer is described by a set of concentric circu-
lar areas that give the sum of pixel values within the corre-
sponding areas. Ohbuchi et al. (2003) proposed the Multiple
Orientation Depth Fourier Transform (MODFT) descriptor
where the model is projected from 42 viewpoints to cover
all possible view aspects. Each depth buffer is then trans-
formed to the r − θ domain and the Fourier transform is
applied. To compare two objects, all possible pairs of coeffi-
cients are compared which inevitably increases comparison
time. Zarpalas et al. (2007) introduced a 3D shape descrip-
tor called the spherical trace transform, which is the gener-
alization of the 2D trace transform. In this method, a variety
of 2D features are computed for a set of planes intersect-
ing the volume of a 3D model. A newly proposed method is
the depth line descriptor proposed by Chaouch and Verroust-
Blondet (2007) where a 3D object is projected to the faces of
its bounding box giving 6 depth buffers. Each depth buffer is
then decomposed into a set of horizontal and vertical depth
lines that are converted to state sequences which describe
the change in depth at neighboring pixels.

2.1.2 Methods Based on 3D Representations

In this category, shape descriptors are extracted from 3D
shape representations and the similarity is measured using
appropriate representations in the spatial domain or in the
spectral domain. A set of subcategories can be identified
here, namely, statistical, graph-based and spherical function-
based descriptors.

Statistical descriptors use histograms to capture the dis-
tributions of shape features. They are compact and fast to
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compute but they have very limited discrimination ability
since they fail to capture local details that are characteris-
tic of the object’s shape. In the Shape Histograms descrip-
tor proposed by Ankerst et al. (1999), 3D space is divided
into concentric shells, sectors, or both and for each part, the
model’s shape distribution is computed giving a sum of his-
tograms bins. The shape distributions descriptor proposed
by Osada et al. (2001, 2002) measures a set of shape char-
acteristics for a random set of points belonging to the ob-
ject, using appropriate shape functions, e.g. the D2 function
which measures the distance between two random surface
points. Ohbuchi et al. (2005) proposed enhanced shape func-
tions, namely the (absolute) angle distance histogram for in-
consistently oriented meshes, which are extensions of the
D2 shape distribution. Zaharia and Petreux (2001) presented
the 3D shape spectrum descriptor which is the histogram
that describes the angular representation of the first and sec-
ond principal curvature along the surface of the 3D object. In
Sundar et al. (2003b) make use of 3D shape contexts which
are histograms each one corresponding to a surface point
and capturing the distribution of the relative coordinates of
the remaining surface points.

Graph-based methods use hierarchical structures to rep-
resent 3D objects and the similarity is measured using
graph-matching techniques. These methods are suited to
intra-class search, i.e. searching within very similar objects
at different poses (articulations) but they have limited dis-
crimination ability in generic object retrieval. Hilaga et al.
(2001) introduced the multi-resolution Reeb graph, which
represents a 3D object’s topology and skeletal structure at
various levels of detail. In Zhang et al. (2005) consider the
use of medial surfaces to compute an equivalent directed
acyclic graph of an object. In the work of Sundar et al.
(2003a), the 3D object passes through a thinning process
producing a set of skeletal points, which finally form a di-
rected acyclic graph by applying the minimum spanning tree
algorithm. Cornea et al. (2005) propose the use of curve
skeletons produced by the application of the generalized dis-
tance field to the volume of the 3D object and similarity is
measured using the earth mover’s distance. The P3DS de-
scriptor developed by Kim et al. (2004) uses an attributed
relational graph whose nodes correspond to parts of the ob-
ject that are represented using ellipsoids and the similarity
is computed by employing the earth mover’s distance.

A plurality of methods exists that use spherical functions
to parameterize the shape of a 3D object. These methods
exhibit good discrimination ability in general but most of
them cannot capture shape features uniformly. This happens
when the longitude-latitude parameterization is adopted that
results in non-uniform sampling between the poles of the
spherical function. Vranic (2004) proposed the Ray-based
descriptor which characterizes a 3D object by a spherical
extent function capturing the furthest intersection points of

the model’s surface with rays emanating from the origin.
Spherical harmonics or moments can be used to represent
the spherical extent function. A generalization of the pre-
vious approach (Vranic 2004) uses several spherical extent
functions of different radii. The GEDT descriptor proposed
by Kazhdan et al. (2003) is a volumetric representation of
the Gaussian Euclidean Distance Transform of a 3D ob-
ject, expressed by norms of spherical harmonic frequen-
cies. In Papadakis et al. (2007), the CRSP descriptor was
proposed which uses the Continuous PCA (CPCA) along
with Normals PCA (NPCA) to alleviate the rotation invari-
ance problem and describes a 3D object using a volumetric
spherical-function based representation expressed by spher-
ical harmonics. Yu et al. (2003) used spherical functions to
describe the topology and concavity of the surface of a 3D
object and the amount of effort required to transform it to
its bounding sphere. Generalizing from 2D to 3D, Novotni
and Klein (2003) presented the 3D Zernike descriptor, Daras
et al. (2006) introduced the generalized radon transform, Ri-
card et al. (2005) developed the 3D ART descriptor by gen-
eralizing the 2D angular radial transform and Zaharia and
Preteux (2002) proposed the C3DHTD descriptor by gener-
alizing the 2D Hough Transform.

2.1.3 Hybrid Methods

Besides the previous categories, combinations of different
methods have been considered in order to enhance the over-
all performance, which comprise a third category.

Vranic (2005) developed a hybrid descriptor called DE-
SIRE, that consists of the Silhouette, Ray and Depth buffer
based descriptors, which are combined linearly by fixed
weights. The approach of Bustos et al. (2004) assumes that
the classification of a particular dataset is given, in order to
estimate the expected performance of the individual shape
descriptors for the submitted query and automatically weigh
the contribution of each method. However, in the general
case, the classification of a 3D model dataset is not fixed
since the content of a 3D model dataset is not static. In the
context of partial shape matching, Funkhouser and Shilane
(2006) use the predicted distinction performance of a set of
descriptors based on a preceding training stage and perform
a priority driven search in the space of feature correspon-
dences to determine the best match of features between a
pair of models. The disadvantages of this approach is its
time complexity which is prohibitive for online interaction
as well as the storage requirements for the descriptors of all
the models in the database. Based on the idea of combin-
ing features obtained from 2D and 3D representations, Song
and Golshani (2003) developed a descriptor that described
an object by obtaining a set of orthogonal projections from
different viewpoints and by measuring the curvature of the
object’s surface. Similar in spirit, Papadakis et al. (2008a)
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proposed a hybrid descriptor formed by combining features
extracted from a depth-buffer and spherical-function based
representation, with enhanced translation and rotation in-
variance properties. The advantage of this method over sim-
ilar approaches is the top discriminative power along with
minimum space and time requirements.

2.2 Relevance Feedback in 3D Object Retrieval

In order to enable the machine to retrieve information
through adapting to individual categorization criteria, rel-
evance feedback (RF) was introduced as a means to involve
the user in the retrieval process and guide the retrieval sys-
tem towards the target. Relevance feedback was first used
to improve text retrieval (Rochio 1971), later on success-
fully employed in image retrieval systems and lately in a
few 3D object retrieval systems. It is the information that is
acquired from the user’s interaction with the retrieval sys-
tem about the relevance of a subset of the retrieved results.
Further information on relevance feedback methods can be
found in Ruthven and Lalmas (2003), Crucianu et al. (2004),
Zhou and Huang (2001) and Papadakis et al. (2008b).

Local relevance feedback (LRF), also known as pseudo
or blind relevance feedback, is different from the conven-
tional approach in that the user does not actually provide
any feedback at all. Instead, the required training data are
obtained based only on the unsupervised retrieval result.
The procedure comprises two steps. First, the user submits
a query to the system which uses a set of low-level features
to produce a ranked list of results which is not displayed to
the user. Second, the system reconfigures itself by only us-
ing the top m matches of the list, based on the assumption
that most likely they are relevant to the user’s query.

LRF was first employed in the context of text retrieval,
in order to extend the keywords comprising the query with
related words from the top ranked retrieved documents.
Apart from a few studies that incorporated RF in 3D ob-
ject retrieval (Elad et al. 2001; Bang and Chen 2002; Atmo-
sukarto et al. 2005; Lou et al. 2003; Leifman et al. 2005;
Akbar et al. 2006; Novotni et al. 2005), LRF has only lately
been examined in Papadakis et al. (2008b).

3 Computation of the PANORAMA Descriptor

In this section, we first describe the steps for the compu-
tation of the proposed descriptor (PANORAMA), namely:
(i) pose normalization (Sect. 3.1), (ii) extraction of the
panoramic views (Sect. 3.2) and (iii) feature extraction
(Sect. 3.3). Finally, in Sect. 3.4 we describe a weighing
scheme that is applied to the features and the procedure for
comparing two PANORAMA descriptors.

3.1 Pose Normalization

Prior to the extraction of the PANORAMA descriptor, we
must first normalize the pose of a 3D object, since the trans-
lation, rotation and scale characteristics should not influence
the measure of similarity between objects.

To normalize the translation of a 3D model we compute
its centroid using CPCA (Vranic 2004). In CPCA, the cen-
troid of a 3D mesh model is computed as the average of its
triangle centroids where every triangle is weighed propor-
tionally to its surface area. We translate the model so that its
centroid coincides with the origin and translation invariance
is achieved as the centroids of all 3D models coincide.

To normalize for rotation, we use CPCA and NPCA (Pa-
padakis et al. 2007) in order to align the principal axes of a
3D model with the coordinate axes. First, we align the 3D
model using CPCA to determine its principal axes using the
model’s spatial surface distribution and then we use NPCA
to determine its principal axes using the surface orientation
distribution. Both methods use Principal Component Analy-
sis (PCA) to compute the principal axes of the 3D model.
The difference between the two methods lies in the input
data that are used for the computation of the covariance ma-
trix. In particular, in CPCA the surface area coordinates are
used whereas in NPCA the surface orientation coordinates
are used which are obtained from the triangles’ normal vec-
tors. The detailed description regarding the formulation of
CPCA and NPCA can be found in Vranic (2004) and in our
previous work (Papadakis et al. 2007), respectively.

Thus, we obtain two alternative aligned versions of the
3D model, which are separately used to extract two sets of
features that are integrated into a single feature vector (see
Sect. 3.4).

The PANORAMA shape descriptor is rendered scale in-
variant, by normalizing the corresponding features to the
unit L1 norm. As will be later described in Sects. 3.3.1 and
3.3.2, the features used by the PANORAMA descriptor are
obtained from the 2D Discrete Fourier Transform and 2D
Discrete Wavelet Transform. The corresponding coefficients
are proportional to the object’s scale, therefore by normal-
izing the coefficients to their unit L1 norm we are in fact
normalizing all objects to the same scale.

3.2 Extraction of Panoramic Views

After the normalization of a 3D model’s pose, the next step
is to acquire a set of panoramic views.

To obtain a panoramic view, we project the model to the
lateral surface of a cylinder of radius R and height H = 2R,
centered at the origin with its axis parallel to one of the co-
ordinate axes (see Fig. 1). We set the value of R to 3 ∗ dmean

where dmean is the mean distance of the model’s surface
from its centroid. For each model, the value of dmean is deter-
mined using the diagonal elements of the covariance matrix
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Fig. 1 The cylinder used for acquiring the projection of a 3D model

used in CPCA that give the average distances of the model’s
surface from the coordinate axes. Setting R = 3∗dmean does
not imply that a 3D model will necessarily lie completely
inside the cylinder. However, this approach is better than us-
ing a bounding cylinder, that may contain the model in small
scale in the presence of outlying parts of the model. The em-
pirical value 3 ∗ dmean enables the majority of 3D models to
lie completely inside the cylinder, while having a suitable
scale to produce a descriptive projection.

In the following, we parameterize the lateral surface of
the cylinder using a set of points s(ϕ, y) where ϕ ∈ [0,2π]
is the angle in the xy plane, y ∈ [0,H ] and we sample the
ϕ and y coordinates at rates 2B and B , respectively (we set
B = 64). We sample the ϕ dimension at twice the rate of the
y dimension to account for the difference in length between
the perimeter of the cylinder’s lateral surface and its height.
Although the perimeter of the cylinder’s lateral surface is
π � 3 times its height, we set the sampling rates at 2B

and B , respectively, since it was experimentally found as the
best trade-off between effectiveness and efficiency. Thus we
obtain the set of points s(ϕu, yv) where ϕu = u ∗ 2π/(2B),
yv = v ∗ H/B , u ∈ [0,2B − 1] and v ∈ [0,B − 1]. These
points are shown in Fig. 2.

The next step is to determine the value at each point
s(ϕu, yv). The computation is carried out iteratively for v =
0,1, . . . ,B − 1, each time considering the set of coplanar
s(ϕu, yv) points i.e. a cross section of the cylinder at height
yv and for each cross section we cast rays from its center cv

in the ϕu directions. In Fig. 3, we show the points s(ϕu, yv)

of the top-most cross section (v = B − 1) of the projection
cylinder along with the corresponding rays emanating from
the center of the cross section.

The cylindrical projections are used to capture two char-
acteristics of a 3D model’s surface; (i) the position of the
model’s surface in 3D space and (ii) the orientation of the
model’s surface. To capture these characteristics we use two
kinds of cylindrical projections s1(ϕu, yv) and s2(ϕu, yv).

Fig. 2 The discretization of the lateral surface of the projection cylin-
der (points in orange) to the set of points s(ϕu, yv)

Fig. 3 The top-most cross section of the cylinder along with the cor-
responding rays emanating from the center of the cross section cB−1

By default, the initial value of a point sk(ϕu, yv), k ∈ {1,2}
is set to zero.

To capture the position of the model’s surface, for each
cross section at height yv we compute the distances from cv

of the intersections of the model’s surface with the rays at
each direction ϕu.

Let pos(ϕu, yv) denote the distance of the furthest from
cv point of intersection between the ray emanating from cv

in the ϕu direction and the model’s surface, then:

s1(ϕu, yv) = pos(ϕu, yv) (1)

Thus the value of a point s1(ϕu, yv) lies in the range [0,R],
where R denotes the radius of the cylinder.

A cylindrical projection can be viewed as a 2D gray-scale
image where pixels correspond to the sk(ϕu, yv) intersection
points in a manner reminiscent of cylindrical texture map-
ping (see Theoharis et al. 2008) and their values are mapped
to the [0,1] space. In Fig. 4(a), we show an example 3D
model along with a projection cylinder aligned with the z-
axis. In Fig. 4(b) the unfolded visual representation of its
corresponding cylindrical projection s1(ϕu, yv) is given.
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Fig. 4 (a) Pose normalized 3D model, (b) the unfolded cylindrical
projection of the 3D model capturing the position of the surface (c) the
unfolded cylindrical projection of the 3D model capturing the orienta-
tion of the surface

To capture the orientation of the model’s surface, for each
cross section at height yv we compute the intersections of
the model’s surface with the rays at each direction ϕu and
measure the angle between a ray and the normal vector of
the triangle that is intersected. To determine the value of a
point s2(ϕu, yv) we use the cosine of the angle between the
ray and the normal vector of the furthest from cv intersected
triangle of the model’s surface.

Let ang(ϕu, yv) denote the aforementioned angle then the
values of the s2(ϕu, yv) points are given by:

s2(ϕu, yv) = | cos(ang(ϕu, yv))|n (2)

In Fig. 4(c) the unfolded visual representation of the
cylindrical projection s2(ϕu, yv) is given for the model
shown in Fig. 4(a).

We take the nth power of | cos(ang(ϕu, yv))|, where
n ≥ 2, since this setting enhances the contrast of the pro-

Fig. 5 (a) A 3D model of a cup and (b)–(d) the corresponding cylin-
drical projections s1,t (ϕu, yv) using three cylinders each one aligned
with the z, y and x coordinate axis, respectively

duced cylindrical projection which was experimentally
found to be more discriminative. Setting n to a value in the
range [4,6] gives the best results. Also, taking the absolute
value of the cosine is necessary to deal with inconsistently
oriented triangles along the object’s surface. We do not en-
hance the contrast of the s1(ϕu, yv) projection since it was
found to produce less discriminative features.

Although the cylindrical projection captures a large part
of the shape of a model, a single cylindrical projection may
not be able to capture concave parts. In Fig. 5 we show a
typical example of this. Figure 5(a) shows the 3D model of a
cup and Fig. 5(b) shows the produced cylindrical projection
when using a projection cylinder that is aligned with the z-
axis. As can be observed, this projection cannot capture the
interior part of the cup.

To alleviate this problem, we compute cylindrical pro-
jections from differently oriented cylinders, i.e. cylinders
that are aligned with all coordinate axes in order to ob-
tain a more informative 3D model representation. Thus, we
project a 3D model to the lateral surfaces of three cylin-
ders, each one aligned with a different coordinate axis as
shown in Fig. 5(b)–(d), which produces three sets of points
sk,t (ϕu, yv) for k ∈ {1,2}, where t ∈ {x, y, z} denotes the
axis that the cylinder is aligned with. For the cylindrical pro-
jections that are aligned with the x and y axes, the ϕu vari-
able is measured at the yz and zx planes respectively while
all other notations remain the same.
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3.3 Feature Representation of Panoramic Views

In this section, we detail the procedure for the generation of
a set of features that describe a panoramic view. Toward this
goal, we use the 2D Discrete Fourier Transform (Sect. 3.3.1)
and 2D Discrete Wavelet Transform (Sect. 3.3.2).

3.3.1 2D Discrete Fourier Transform

For each cylindrical projection sk,t (ϕu, yv) (k ∈ {1,2} and
t ∈ {x, y, z}), we compute the corresponding 2D Discrete
Fourier Transform (DFT), which is given by:

Fk,t (m,n) =
2B−1∑

u=0

B−1∑

v=0

sk,t (ϕu, yv) · e−2jπ( mu
2B

+ nv
B

) (3)

where m ∈ [0,2B − 1] and n ∈ [0,B − 1].
Since sk,t (ϕu, yv) is a real-valued function, the Hermitian

symmetry property holds for the Fourier coefficients, i.e.
Fk,t (u, v) = F ∗

k,t (2B − u,B − v), where F ∗ denotes the
complex conjugate. Hence, the size of the non-redundant in-
formation is a set of (B + 1) ∗ (B

2 + 1) Fourier coefficients
for each projection. Next, we store the absolute values of the
real and imaginary part of each coefficient and normalize the
coefficients to the unit L1 norm, which ensures scaling in-
variance as explained in Sect. 3.1.

In practice, most of the energy of the Fourier coefficients
is concentrated on the four corners of the image of the trans-
form, as can be seen in Fig. 6(a). Therefore, we only keep a
subset of the full set of Fourier coefficients, i.e. those con-
taining most of the energy. This can be straightforwardly

Fig. 6 (a) A typical 2D Fourier transform of a cylindrical projection;
(b) The Fourier coefficients that lie inside the area of the ellipsoid are
discarded to reduce dimensionality

done by considering an ellipse positioned at the center of
the Fourier image and discarding all the coefficients that lie
on the interior of the ellipse, as shown in Fig. 6(b). The ratio
of the width to the height of the ellipse is equal to the ratio
of the width to the height of the Fourier image and the size
of the ellipse is set so that the low energy coefficients that
are discarded correspond to approximately 35% of the total
number of coefficients per projection.

After the completion of all previous operations, the re-
sulting coefficients are denoted by F̃k,t . Thus, the final fea-
ture set sF of Fourier coefficients for a particular aligned
version of a 3D object is denoted by:

sF = (F̃1,x , F̃2,x , F̃1,y, F̃2,y , F̃1,z, F̃2,z) (4)

3.3.2 2D Discrete Wavelet Transform

For each cylindrical projection sk,t (ϕu, yv) (k ∈ {1,2} and
t ∈ {x, y, z}), we compute the corresponding 2D Discrete
Wavelet Transform (DWT), which is given by:

W
ϕ
k,t (j0,m,n)

= 1√
2B · B ·

2B−1∑

u=0

B−1∑

v=0

sk,t (ϕu, yv) · ϕj0,m,n(u, v), (5)

W
ψ
k,t (j,m,n)

= 1√
2B · B ·

2B−1∑

u=0

B−1∑

v=0

sk,t (ϕu, yv) · ψj,m,n(u, v) (6)

where m ∈ [0,2B − 1], n ∈ [0,B − 1], j ≥ j0 denotes the
scale of the multi-level DWT, j0 is the starting scale and
ϕj0,m,n(u, v), ψj,m,n(u, v) denotes the scaling and wavelet
function, respectively. The W

ϕ
k,t (j0,m,n) approximation-

scaling coefficients correspond to the low-pass subband of
the transform at the starting scale j0. The W

ψ
k,t (j,m,n)

detail-wavelet coefficients correspond to the vertical, hori-
zontal and diagonal subbands. We take the absolute values
of the coefficients and normalize to their L1 norm, which
are now denoted as W̃

ϕ
k,t (j0,m,n) and W̃

ψ
k,t (j,m,n).

In Fig. 7, we show the image of a 2-level wavelet transfor-
mation of a cylindrical projection. The transform is shown
in negative colors to better point out the detail coefficients.

In our implementation, we computed the DWT of each
cylindrical projection up to the last level. In particular, since
the dimensions of a cylindrical projection are (2B) · (B),
the total number of levels of the DWT are log2 B and thus
j = 0,1, . . . log2 B − 1.

To compute the DWT we have used the Haar and Coiflet
(C6) filters (basis functions), as they attained the best over-
all performance. Therefore, two distinctive DWTs are com-
puted, the first using the Haar and the second using the
Coiflet basis functions.
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Fig. 7 2-level wavelet transformation of a cylindrical projection of an
airplane (the image is shown in negative colors)

Instead of using directly the coefficients of the DWT as
shape features, we compute a set of standard statistic image
features that are listed below:

i. Mean

μ = 1

nxny

nx∑

x=1

ny∑

y=1

I (x, y) (7)

ii. Standard deviation

σ =
√√√√ 1

nxny

nx∑

x=1

ny∑

y=1

(I (x, y) − μ)2 (8)

iii. Skewness

β =
1

nxny

∑nx

x=1

∑ny

y=1(I (x, y) − μ)3

σ 3
(9)

where nx , ny are the dimensions of an image I (x, y).
In our case, the above features are computed for each sub-

image of the DWT, i.e. for each subband in every level of the
DWT. Therefore, I (x, y) is replaced by the W̃

ϕ
k,t (j0,m,n)

and W̃
ψ
k,t (j,m,n) coefficients accordingly. Since we have

log2 B levels in the DWT, the total number of subbands per
cylindrical projection is (3 ∗ log2 B + 1). Hence, since we
use two wavelet basis functions and three statistic image fea-
tures, we obtain a total of 2 ∗ 3 ∗ (3 ∗ log2 B + 1) features
per cylindrical projection which are denoted as Ṽk,t and the
final feature set sW for a particular aligned version of a 3D
object is denoted as:

sW = (Ṽ1,x , Ṽ2,x , Ṽ1,y , Ṽ2,y , Ṽ1,z, Ṽ2,z) (10)

3.4 Features Weighing and Matching

The features that were generated for each panoramic view
are weighed by a factor wt , according to the orientation
of the cylinder (x, y or z) that was used to acquire the
cylindrical projection. We apply this weighing based on
the observation that not all cylindrical projections capture

Fig. 8 (a) A 3D model of a car and (b)–(d) the corresponding cylindri-
cal projections s1,t (ϕu, yv) and s2,t (ϕu, yv) for t = z, t = y and t = x,
respectively

the same amount of information about the model’s shape.
The t-projection cylinder that is parallel to the t coordi-
nate axis corresponds to one of the principal axes of the 3D
model that were determined in the rotation normalization
step. The amount of information that is captured by the t-
cylindrical projection is directly related to the principal axes
of the model’s surface that are encoded, as is demonstrated
in Fig. 8 for an example 3D model of a race car. In this
example, the first, second and third principal axis of the ob-
ject’s surface is aligned with the x, y and z axis, respectively,
therefore the most informative cylindrical projection cor-
responds to the x-projection cylinder (Fig. 8(d)), followed
by the y-projection cylinder (Fig. 8(c)) and the least infor-
mative z-projection cylinder (Fig. 8(b)). We set the factors
wt to fixed values that were determined experimentally as
wx = 0.51, wy = 0.31 and wz = 0.18.

To compute the distance between the same aligned ver-
sion (CPCA or NPCA) of two 3D objects, we compute the
distances between the corresponding sets of features. We de-
note the features set of a particular aligned version of an ob-
ject by:

pl = (sF,l, sW,l), l ∈ {cpca,npca} (11)
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and the full PANORAMA descriptor of 3D object by:

P = (pcpca,pnpca) (12)

Considering the features sets pl , ṕl of two 3D objects of
the same aligned version l, the distance is computed by:

dl(pl , ṕl) = L1(sF,l, śF,l) + Dcan(sW,l, śW,l) (13)

where L1(, ), Dcan(, ) denotes the Manhattan and the Can-
berra distance (Kokare et al. 2003), respectively, each one
normalized to the [0,1] space.

The overall similarity between two 3D objects is mea-
sured by computing the distance between the sets of features
of the same aligned version and the comparison that gives
the minimum distance between the two alignments, sets the
final score. Thus the overall distance D(P, Ṕ) between two
PANORAMA descriptors P and Ṕ is given by:

D(P, Ṕ) = min
l

dl(pl , ṕl) (14)

4 Local Relevance Feedback (LRF) Technique

In this section, we outline the major points of the employed
LRF method whose detailed description can be found in Pa-
padakis et al. (2008b). The method comprises two stages,
the on-line and the off-line stage.

During the off-line stage, the descriptor of each stored
object is updated using its k nearest neighbors in feature
space. These are assumed to belong to the same class and
the updated descriptor is the average of the original descrip-
tor and a weighed centroid of the k nearest neighbors.

During the on-line stage, a user submits a query to the
system which finds within the updated feature space its k

nearest neighbors and updates its descriptor according to
rule that was applied during the off-line stage. The updated
descriptor of the query is then used to measure its similarity
against every object of the database and display the results.

The relevance assumption for the k nearest neighbors is
not always valid as irrelevant objects that may belong to
the k nearest neighbors will be mistaken as relevant. This
is known as query drift and implies the scenario where the
retrieval system is misled by the irrelevant data and drawn
away from the user’s target. However, if the features that are
used to compare two objects are discriminative enough to
cluster most objects that belong to the same class, then the
relevance assumption will be valid in the majority of cases
and the average performance will be better.

In Papadakis et al. (2008b) it was shown that LRF in-
creased the performance of the CRSP descriptor (Papadakis
et al. 2007). The PANORAMA descriptor is far more dis-
criminative therefore reducing the negative effect of the
query drift phenomenon and rendering LRF more applica-
ble.

The number k of nearest neighbors that are considered
as relevant to a query is determined by the expected recall
of the employed shape features near the neighborhood of a
query. In this case, setting k = 4 gave the best results which
amounts to approximately 12% of the objects of a class on
average, for the datasets used in Sect. 5.

5 Results

We next present the results of an extensive evaluation of the
proposed PANORAMA descriptor and LRF technique. We
tested performance using the following standard 3D model
datasets:

(i) The classified dataset of CCCC (Vranic 2004).
(ii) The dataset of the National Institute of Standards and

Technology (NIST, Fang et al. 2008).
(iii) The dataset of the Watertight Models track of SHape

REtrieval Contest 2007 (WM-SHREC) (Veltkamp and
ter Haar 2007).

(iv) The MPEG-7 dataset (http://www.chiariglione.org/
mpeg/).

(v) The test dataset of the Princeton Shape Benchmark
(PSB) (Shilane et al. 2004).

(vi) The dataset of the Engineering Shape Benchmark
(ESB) (Jayanti et al. 2006).

Table 1 gives the characteristics of these datasets.
To evaluate the performance we use precision-recall dia-

grams. Recall is the ratio of relevant to the query retrieved
models to the total number of relevant models while preci-
sion is the ratio of relevant to the query retrieved models to
the number of retrieved models. The evaluations were per-
formed by using each model of a dataset as a query on the re-
maining set of models and computing the average precision-
recall performance overall models.

5.1 Robustness

In this section we test the robustness of the PANORAMA
descriptor under the presence of noise. We have experi-
mented with various degrees of Gaussian noise added along

Table 1 Characteristics of the evaluation datasets

Dataset #models #classes Type

CCCC 472 55 generic

NIST 800 40 generic

WM-SHREC 400 20 generic

MPEG-7 1300 135 generic

PSB 907 92 generic

ESB 866 48 CAD

http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/
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Fig. 9 (a) Example 3D objects and (b)–(d) the effect of different de-
grees of additive Gaussian noise on their surface

Table 2 Effect of noise in the determination of principal axes for
the CPCA and NPCA rotation normalization methods within the PSB
dataset

Alignment method σ = 0.01 σ = 0.03 σ = 0.05

CPCA 6◦ 6.6◦ 7.4◦

NPCA 10.4◦ 14◦ 16.8◦

the surface of each 3D object as shown in Fig. 9. Apparently,
adding Gaussian noise with σ > 0.01 has a destructive ef-
fect on the object’s surface and most of the geometric details
are lost. We believe that noisy 3D objects such as the ones
shown in Fig. 9(c)–(d) are rarely encountered and practically
useless, thus we are more interested in the robustness of the
PANORAMA descriptor with respect to levels of noise that
compare to the examples shown in Fig. 9(b).

Since the PANORAMA descriptor is based on normal-
izing the rotation of a 3D object, we measured the effect
of noise in the determination of the object’s principal axes
for CPCA and NPCA. The results of this experiment are
given in Table 2 where we show the average angular per-
turbation of the object’s principal axes after the addition of
noise within the PSB dataset.

It is easy to understand that a certain change in the co-
ordinates of the vertices that comprise a polygon has a
greater relative impact on the orientation of the polygon’s
normal vector. This can be demonstrated in Fig. 10 where
we show the depth buffers that are obtained after adding the
same amounts of Gaussian noise for the bunny 3D object of
Fig. 9(a). Apparently, the effect of noise is more clearly no-
ticed in Fig. 9 in contrast to Fig. 10 where only the depth
is used. Thus, the fact that the NPCA alignment method is
affected by noise to a greater degree than CPCA is a rea-
sonable result. Hence, we can say that CPCA is more robust
than NPCA with respect to noise.

Nevertheless, a perturbation of the object’s principal axes
after the addition of noise does not necessarily mean that the

Fig. 10 Demonstration of the effect of different amounts of additive
Gaussian noise on a depth buffer

Fig. 11 Demonstration of the effect of different amounts of additive
Gaussian noise on the retrieval performance of the PANORAMA de-
scriptor

alignment of 3D objects is worse and leads to reduced per-
formance in 3D object retrieval. For example, if the principal
axes of 3D objects are perturbed toward the same directions
for objects of the same class, then we expect to attain similar
retrieval performance.

In the sequel, we evaluate the performance of the
PANORAMA descriptor before and after the addition of dif-
ferent levels of Gaussian noise along the surface of 3D ob-
jects as was performed previously. However, we should note
that the performance of the descriptor is not only affected
by the perturbed principal axes but also by the alternated
surfaces of 3D objects after the addition of noise which re-
sults in different cylindrical projections as well as features.
In Fig. 11, we demonstrate the performance in terms of pre-
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cision and recall within the PSB dataset. This experiment
demonstrates that the PANORAMA descriptor is very ro-
bust with respect to reasonable levels of noise, as in the
case where σ = 0.01. In this case, we can see that the per-
formance of PANORAMA is totally unaffected while for
greater levels of noise (σ = 0.03 and σ = 0.05) the per-
formance decreases gracefully compared to the destructive
effect of noise that is demonstrated in Fig. 9.

5.2 Justification of PANORAMA settings

In this section we demonstrate the increase in retrieval
performance that is achieved due to specific settings of
the PANORAMA descriptor. In particular, in Fig. 12(a)
we compare the performance when using s1,t (ϕu, yv),
s2,t (ϕu, yv) or both and in Fig. 12(b) we evaluate the per-
formance between using a single and using three perpen-
dicular cylinders aligned with the coordinate axes. The re-
sults clearly show that a significant increase in discrimina-
tive power is attained when capturing both the surface po-
sition and orientation as well as using three perpendicular
cylinders instead of one.

5.3 Comparative Evaluation

We next compare the PANORAMA descriptor against the
following state-of-the-art methods:

– The 2D/3D Hybrid descriptor developed by Papadakis
et al. (2008a).

– The DESIRE descriptor developed by Vranic (2005).
– The Light Field descriptor (LF) developed by Chen et al.

(2003).
– The spherical harmonic representation of the Gaussian

Euclidean Distance Transform descriptor (SH-GEDT)
developed by Kazhdan et al. (2003).

In Fig. 13, we give the precision-recall diagrams compar-
ing the proposed PANORAMA descriptor against the other
descriptors and show the increase in performance when LRF
is employed. It is evident that the PANORAMA descriptor
attains a better overall performance compared to the other
methods. Interestingly, although the LF descriptor uses a
plurality of 2D images (100 orthogonal projections) it is out-
performed by the PANORAMA descriptor which uses a to-
tal of 12 cylindrical projections that are acquired from just
three perpendicular cylinders. In addition, the PANORAMA
descriptor is more discriminative than the 2D/3D Hybrid de-
scriptor which uses a total of 12 orthogonal projections com-
bined with 48 spherical functions. This strongly suggests
that the cylindrical projection is a more effective representa-
tion for the purpose of 3D object retrieval compared to the
conventional orthogonal projection and spherical function
based representation. This is also confirmed by comparing

Fig. 12 Performance evaluation of the PANORAMA descriptor
when using: (a) s1,t (ϕu, yv) (PANORAMA → Pos), s2,t (ϕu, yv)

(PANORAMA → Ori) or both (PANORAMA); (b) a single cylinder
aligned with the z coordinate axis (PANORAMA → z-projection) and
a set of three perpendicular cylinders aligned with the object’s principal
axes (PANORAMA)

PANORAMA with the DESIRE descriptor that also uses 12
orthogonal projections (6 depth buffers and 6 silhouettes) as
well as features extracted using a spherical function.

In addition, it is evident that LRF adds a major gain in
the overall performance, particularly on the CCCC, NIST,
WM-SHREC and PSB datasets. This indicates that the query
drift phenomenon that comes with LRF is compensated
for the increased precision of the PANORAMA descriptor
within the top retrieved results. These results are coherent
to those that were obtained using the CRSP descriptor in
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Fig. 13 Precision-recall plots comparing the proposed PANORAMA descriptor against the 2D/3D Hybrid, DESIRE, LF and SH-GEDT descriptor
in various 3D model datasets. The comparison includes the combination of the PANORAMA descriptor with local relevance feedback (LRF)
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Papadakis et al. (2008b) and show that the employed LRF
technique is general purpose and can be applied to any re-
trieval method as long as precision is high near the neigh-
borhood of the query. It is also worth noticing that the LRF
technique increases precision mainly at higher values of re-
call, as can be seen in Fig. 13. This implies that a user no-
tices the increase in performance as he browses through the
list of results until most or all models appear that belong to
the query’s class. It also implies that employing LRF more
than once before showing the results to the user will not add
any further gain in the retrieval performance. This is because
the employed LRF technique uses the k nearest neighbors of
a 3D model to update its descriptor but since precision is not
increased at the early stages of recall, the k nearest neigh-
bors of the model after employing LRF will mostly be the
same as before employing LRF.

To further quantify the performance of the compared
methods, we next employ the following measures:

– Nearest Neighbor (NN): The percentage of queries where
the closest match belongs to the query’s class.

– First Tier (FT): The recall for the (C − 1) closest matches
were C is the cardinality of the query’s class.

– Second Tier (ST): The recall for the 2(C − 1) closest
matches were C is the cardinality of the query’s class.

These measures range from 0%–100% and higher values in-
dicate better performance. In Table 3, we give the scores of
each method for each measure for all datasets.

Apparently, the PANORAMA descriptor consistently
outperforms all compared methods with respect to these
measures as well. We can also observe that the nearest
neighbor score is not particularly affected by the applica-
tion of LRF, compared to the first and second tier measures
whose values are significantly increased after employing
LRF. This confirms our earlier conclusion that LRF does
not change the precision at the early stages of recall and
therefore it does not add any further gain in performance if
it is applied multiple times.

As described in Sect. 3.3, the PANORAMA descriptor
uses two kinds of features, namely those coming from the
2D DFT (sF ) and the 2D DWT (sW ). Comparing the re-
trieval performance between the two kinds, the sF compo-
nent was found to be more effective in most datasets than
the sW part. In fact, the sW part had a slight advantage
in retrieval performance within the WM-SHREC and ESB
datasets. Overall however, the sF part is about 3% better
in terms of average precision, which can be justified by the
fact that sF has greater dimensionality than the sW part. In
particular, the dimensionality of sF is 2 ∗ (B + 1) ∗ (B

2 + 1)

while for the sW component it is only 2∗3∗ (3∗ log2 B +1).
Since we set the bandwidth to B = 64, this amounts to a di-
mension of 4160 and 114, respectively. This implies, that
we can attain comparable retrieval performance using just
the sW part of the full descriptor.

Table 3 Quantitative measures scores for the proposed PANORAMA,
2D/3D Hybrid, DESIRE, LF and SH-GEDT methods for the CCCC,
NIST, WM-SHREC, MPEG-7, PSB and ESB datasets

Method NN (%) FT (%) ST (%)

CCCC

PANORAMA + LRF 87.4 70.3 86.6

PANORAMA 87.9 66.3 81.2

2D/3D Hybrid 87.4 60.2 75.8

DESIRE 82.8 55.6 70.0

LF 79.8 50.2 63.1

SH-GEDT 75.7 45.9 59.9

NIST

PANORAMA + LRF 90.4 71.5 84.1

PANORAMA 90.6 63.4 77.5

2D/3D Hybrid 88.1 55.6 72.1

DESIRE 83.7 50.9 64.9

LF 84.1 43.9 56.0

SH-GEDT 76.5 40.5 53.7

WM-SHREC

PANORAMA + LRF 95.7 74.3 83.9

PANORAMA 95.7 67.3 78.4

2D/3D Hybrid 95.5 64.2 77.3

DESIRE 91.7 53.5 67.3

LF 92.3 52.6 66.2

SH-GEDT 87.0 44.7 58.5

MPEG-7

PANORAMA + LRF 87.2 65.5 75.9

PANORAMA 87.2 61.8 73.1

2D/3D Hybrid 86.1 59.6 70.7

DESIRE 86.4 57.7 67.7

LF 80.2 51.7 61.9

SH-GEDT 83.7 50.3 59.4

PSB

PANORAMA + LRF 75.2 53.1 65.9

PANORAMA 75.3 47.9 60.3

2D/3D Hybrid 74.2 47.3 60.6

DESIRE 65.8 40.4 51.3

LF 65.7 38.0 48.7

SH-GEDT 55.3 31.0 41.4

ESB

PANORAMA + LRF 87.0 49.9 65.8

PANORAMA 86.5 49.4 64.1

2D/3D Hybrid 82.9 46.5 60.5

DESIRE 82.3 41.7 55.0

LF 82.0 40.4 53.9

SH-GEDT 80.3 40.1 53.6
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Fig. 14 Examples of queries
within the PSB dataset and the
corresponding top 5 retrieved
models using the PANORAMA
descriptor. The retrieved objects
are ranked from left to right in
decreasing order of similarity

This is a significant advantage of the proposed method as it
can be rendered much more efficient by reducing its storage
requirements and time complexity, with negligible cost in
discriminative power.

Altogether, the PANORAMA descriptor is very efficient
in computation and comparison time. On a standard contem-
porary machine, it takes less than one second to extract and
pairwise comparison time is approximately 0.23 ms which
enables real-time retrieval from large repositories. These are
the average values over the total set of models from the
datasets used in our evaluation.

In Fig. 14, we provide a few examples of queries and the
corresponding top 5 retrieved models from the PSB dataset
using the proposed PANORAMA descriptor.

6 Conclusions

In this paper, we presented a novel 3D shape descriptor
called PANORAMA, that allows effective content-based
3D model retrieval exhibiting superior performance, com-
pared to other state-of-the-art approaches. PANORAMA is
based on a novel 3D shape representation that uses a set
of panoramic views of the 3D model which are obtained
by projecting the model to the lateral surfaces of a set of
cylinders that are aligned with the model’s principal axes.
A panoramic view is particularly descriptive of an object’s
shape as it captures a large portion of the object that would

otherwise require multiple orthogonal projections from dif-
ferent viewpoints. It is also beneficial compared to spherical
function-based representations as the underlying sampling
is uniform in the Euclidean space.

The 2-dimensional parameterization of a cylindrical pro-
jection allows the application of a variety of 2D features
used for 2D shape-matching to be directly applied in the
context of 3D shape matching. In this paper we have used
the 2D Discrete Fourier Transform together with the 2D Dis-
crete Wavelet Transform and their combination enables very
effective and efficient 3D object retrieval. Using only the
wavelet features part of the descriptor, we can greatly in-
crease efficiency in terms of storage requirements and time
complexity, with negligible cost in discriminative power.

Moreover, we have used the PANORAMA descriptor
to examine the application of local relevance feedback in
the context of content-based 3D object retrieval, using the
method that was proposed in Papadakis et al. (2008b). The
results of the evaluation showed that this method can add
a considerable gain in the overall retrieval performance and
can be readily applied to other retrieval methods that exhibit
high precision near the neighborhood of the query.
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